ﻻ يوجد ملخص باللغة العربية
Electrical manipulation of lattice, charge, and spin has been realized respectively by the piezoelectric effect, field-effect transistor, and electric field control of ferromagnetism, bringing about dramatic promotions both in fundamental research and industrial production. However, it is generally accepted that the orbital of materials are impossible to be altered once they have been made. Here we use electric-field to dynamically tune the electronic phase transition in (La,Sr)MnO3 films with different Mn^4+/(Mn^3+ + Mn^4+) ratios. The orbital occupancy and corresponding magnetic anisotropy of these thin films are manipulated by gate voltage in a reversible and quantitative manner. Positive gate voltage increases the proportion of occupancy of the orbital and magnetic anisotropy that were initially favored by strain (irrespective of tensile and compressive), while negative gate voltage reduces the concomitant preferential orbital occupancy and magnetic anisotropy. Besides its fundamental significance in orbital physics, our findings might advance the process towards practical oxide-electronics based on orbital.
We have investigated the magnetic properties of a piezoelectric actuator/ferromagnetic semiconductor hybrid structure. Using a GaMnAs epilayer as the ferromagnetic semiconductor and applying the piezo-stress along its [110] direction, we quantify the
We have performed electrical resistivity and DC magnetization measurements as a function of temperature, on polycrystalline samples of phase separated LaPrCaMnO. We have used the General Effective Medium Theory to obtain theoretical resistivity vs. t
Electrical manipulation of emergent phenomena due to nontrivial band topology is a key to realize next-generation technology using topological protection. A Weyl semimetal is a three-dimensional gapless system that hosts Weyl fermions as low-energy q
Titanium disulfide TiS$_2$, which is a member of the layered transition-metal dichalcogenides with the 1T-CdI$_2$-type crystal structure, is known to exhibit a wide variety of magnetism through intercalating various kinds of transition-metal atoms of
We report the experimental observation of strong electrical magneto-chiral anistropy (eMChA) in trigonal tellurium (t-Te) crystals. We introduce the tensorial character of the effect and determine several tensor elements and we propose a novel intrin