ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrical Manipulation of a Topological Antiferromagnetic State

84   0   0.0 ( 0 )
 نشر من قبل Satoru Nakatsuji
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrical manipulation of emergent phenomena due to nontrivial band topology is a key to realize next-generation technology using topological protection. A Weyl semimetal is a three-dimensional gapless system that hosts Weyl fermions as low-energy quasiparticles. It exhibits various exotic phenomena such as large anomalous Hall effect (AHE) and chiral anomaly, which have robust properties due to the topologically protected Weyl nodes. To manipulate such phenomena, the magnetic version of Weyl semimetals would be useful as a magnetic texture may provide a handle for controlling the locations of Weyl nodes in the Brillouin zone. Moreover, given the prospects of antiferromagnetic (AF) spintronics for realizing high-density devices with ultrafast operation, it would be ideal if one could electrically manipulate an AF Weyl metal. However, no report has appeared on the electrical manipulation of a Weyl metal. Here we demonstrate the electrical switching of a topological AF state and its detection by AHE at room temperature. In particular, we employ a polycrystalline thin film of the AF Weyl metal Mn$_3$Sn, which exhibits zero-field AHE. Using the bilayer device of Mn$_3$Sn and nonmagnetic metals (NMs), we find that an electrical current density of $sim 10^{10}$-$10^{11}$ A/m$^2$ in NMs induces the magnetic switching with a large change in Hall voltage, and besides, the current polarity along a bias field and the sign of the spin Hall angle $theta_{rm SH}$ of NMs [Pt ($theta_{rm SH} > 0$), Cu($theta_{rm SH} sim 0$), W ($theta_{rm SH} < 0$)] determines the sign of the Hall voltage. Notably, the electrical switching in the antiferromagnet is made using the same protocol as the one used for ferromagnetic metals. Our observation may well lead to another leap in science and technology for topological magnetism and AF spintronics.



قيم البحث

اقرأ أيضاً

We study Bi2Se3 by polarization-dependent angle-resolved photoemission spectroscopy (ARPES) and density-functional theory slab calculations. We find that the surface state Dirac fermions are characterized by a layer-dependent entangled spin-orbital t exture, which becomes apparent through quantum interference effects. This explains the discrepancy between the spin polarization from spin-resovled ARPES - ranging from 20 to 85% - and the 100% value assumed in phenomenological models. It also suggests a way to probe the intrinsic spin texture of topological insulators, and to continuously manipulate the spin polarization of photoelectrons and photocurrents all the way from 0 to +/-100% by an appropriate choice of photon energy, linear polarization, and angle of incidence.
We report a novel soft x-ray nanodiffraction study of antiferromagnetic domains in the strongly correlated bylayer manganite La$_{0.96}$Sr$_{2.04}$Mn$_{2}$O$_{7}$. We find that the antiferromagnetic domains are quenched, forming a unique domain patte rn with each domain having an intrinsic memory of its spin direction, and with associated domain walls running along crystallographic directions. This can be explained by the presence of crystallographic or magnetic imperfections locked in during the crystal growth process which pin the antiferromagnetic domains. The antiferromagnetic domain pattern shows two distinct types of domain. We observe, in one type only, a periodic ripple in the manganese spin direction with a period of approximately 4 micrometer. We propose that the loss of inversion symmetry within a bilayer is responsible for this ripple structure through a Dzyaloshinskii-Moriya-type interaction.
The skyrmions generated by frustration in centrosymmetric structures host extra internal degrees of freedom: vorticity and helicity, resulting in distinctive properties and potential functionality, which are not shared by the skyrmions stemming from the Dzyaloshinskii-Moriya interaction in noncentrosymmetric structures. The present work indicates that the magnetism-driven electric polarization carried by skyrmions provides a direct handle for tuning helicity. Especially for the in-plane magnetized skyrmions, the helicity can be continuously rotated and exactly picked by applying an external electric field for both skyrmions and antiskyrmions. The in-plane uniaxial anisotropy is beneficial to this manipulation.
Large-gap quantum spin Hall insulators are promising materials for room-temperature applications based on Dirac fermions. Key to engineer the topologically non-trivial band ordering and sizable band gaps is strong spin-orbit interaction. Following Ka ne and Meles original suggestion, one approach is to synthesize monolayers of heavy atoms with honeycomb coordination accommodated on templates with hexagonal symmetry. Yet, in the majority of cases, this recipe leads to triangular lattices, typically hosting metals or trivial insulators. Here, we conceive and realize indenene, a triangular monolayer of indium on SiC exhibiting non-trivial valley physics driven by local spin-orbit coupling, which prevails over inversion-symmetry breaking terms. By means of tunneling microscopy of the 2D bulk we identify the quantum spin Hall phase of this triangular lattice and unveil how a hidden honeycomb connectivity emerges from interference patterns in Bloch $p_x pm ip_y$-derived wave functions.
115 - Jun Chen , Shuai Dong 2021
Controlling magnetism using voltage is highly desired for applications, but remains challenging due to fundamental contradiction between polarity and magnetism. Here we propose a mechanism to manipulate magnetic domain walls in ferrimagnetic or ferro magnetic multiferroics using electric field. Different from those studies based on static domain-level couplings, here the magnetoelectric coupling relies on the collaborative spin dynamics around domain walls. Accompanying the reversal of spin chirality driven by polarization switching, a rolling-downhill-like motion of domain wall is achieved at the nanoscale, which tunes the magnetization locally. Our mechanism opens an alternative route to pursuit practical and fast converse magnetoelectric functions via spin dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا