ﻻ يوجد ملخص باللغة العربية
Background Achieving hepatitis C elimination is hampered by the costs of treatment and the need to treat hard-to-reach populations. Treatment access could be widened by shortening treatment, but limited research means it is unclear which strategies could achieve sufficiently high cure rates to be acceptable. We present the statistical aspects of a multi-arm trial designed to test multiple strategies simultaneously with a monitoring mechanism to detect and stop those with unacceptably low cure rates quickly. Methods The VIETNARMS trial will factorially randomise patients to three randomisations. We will use Bayesian monitoring at interim analyses to detect and stop recruitment into unsuccessful strategies, defined as a >0.95 posterior probability of the true cure rate being <90%. Here, we tested the operating characteristics of the stopping guideline, planned the timing of the interim analyses and explored power at the final analysis. Results A beta(4.5, 0.5) prior for the true cure rate produces <0.05 probability of incorrectly stopping a group with true cure rate >90%. Groups with very low cure rates (<60%) are very likely (>0.9 probability) to stop after ~25% patients are recruited. Groups with moderately low cure rates (80%) are likely to stop (0.7 probability) before the end of recruitment. Interim analyses 7, 10, 13 and 18 months after recruitment commences provide good probabilities of stopping inferior groups. For an overall true cure rate of 95%, power is >90% to detect non-inferiority in the regimen and strategy comparisons using 5% and 10% margins respectively, regardless of the control cure rate, and to detect a 5% absolute difference in the ribavirin comparison. Conclusions The operating characteristics of the stopping guideline are appropriate and interim analyses can be timed to detect failing groups at various stages.
While difference-in-differences (DID) was originally developed with one pre- and one post-treatment periods, data from additional pre-treatment periods is often available. How can researchers improve the DID design with such multiple pre-treatment pe
Equipment sharing among people who inject drugs (PWID) is a key risk factor in infection by hepatitis C virus (HCV). Both the effectiveness and cost-effectiveness of interventions aimed at reducing HCV transmission in this population (such as opioid
Adaptive interventions (AIs) are increasingly becoming popular in medical and behavioral sciences. An AI is a sequence of individualized intervention options that specify for whom and under what conditions different intervention options should be off
Stroke is a major cause of mortality and long--term disability in the world. Predictive outcome models in stroke are valuable for personalized treatment, rehabilitation planning and in controlled clinical trials. In this paper we design a new model t
Just-in-time adaptive interventions (JITAIs) are time-varying adaptive interventions that use frequent opportunities for the intervention to be adapted--weekly, daily, or even many times a day. The micro-randomized trial (MRT) has emerged for use in