ﻻ يوجد ملخص باللغة العربية
Adaptive interventions (AIs) are increasingly becoming popular in medical and behavioral sciences. An AI is a sequence of individualized intervention options that specify for whom and under what conditions different intervention options should be offered, in order to address the changing needs of individuals as they progress over time. The sequential, multiple assignment, randomized trial (SMART) is a novel trial design that was developed to aid in empirically constructing effective AIs. The sequential randomizations in a SMART often yield multiple AIs that are embedded in the trial by design. Many SMARTs are motivated by scientific questions pertaining to the comparison of such embedded AIs. Existing data analytic methods and sample size planning resources for SMARTs are suitable for superiority testing, namely for testing whether one embedded AI yields better primary outcomes on average than another. This represents a major scientific gap since AIs are often motivated by the need to deliver support/care in a less costly or less burdensome manner, while still yielding benefits that are equivalent or non-inferior to those produced by a more costly/burdensome standard of care. Here, we develop data analytic methods and sample size formulas for SMART studies aiming to test the non-inferiority or equivalence of one AI over another. Sample size and power considerations are discussed with supporting simulations, and online sample size planning resources are provided. For illustration, we use an example from a SMART study aiming to develop an AI for promoting weight loss among overweight/obese adults.
A small n, sequential, multiple assignment, randomized trial (snSMART) is a small sample, two-stage design where participants receive up to two treatments sequentially, but the second treatment depends on response to the first treatment. The treatmen
Clinicians and researchers alike are increasingly interested in how best to personalize interventions. A dynamic treatment regimen (DTR) is a sequence of pre-specified decision rules which can be used to guide the delivery of a sequence of treatments
A utility-based Bayesian population finding (BaPoFi) method was proposed by Morita and Muller (2017, Biometrics, 1355-1365) to analyze data from a randomized clinical trial with the aim of identifying good predictive baseline covariates for optimizin
Just-in-time adaptive interventions (JITAIs) are time-varying adaptive interventions that use frequent opportunities for the intervention to be adapted--weekly, daily, or even many times a day. The micro-randomized trial (MRT) has emerged for use in
Background Achieving hepatitis C elimination is hampered by the costs of treatment and the need to treat hard-to-reach populations. Treatment access could be widened by shortening treatment, but limited research means it is unclear which strategies c