ﻻ يوجد ملخص باللغة العربية
Just-in-time adaptive interventions (JITAIs) are time-varying adaptive interventions that use frequent opportunities for the intervention to be adapted--weekly, daily, or even many times a day. The micro-randomized trial (MRT) has emerged for use in informing the construction of JITAIs. MRTs can be used to address research questions about whether and under what circumstances JITAI components are effective, with the ultimate objective of developing effective and efficient JITAI. The purpose of this article is to clarify why, when, and how to use MRTs; to highlight elements that must be considered when designing and implementing an MRT; and to review primary and secondary analyses methods for MRTs. We briefly review key elements of JITAIs and discuss a variety of considerations that go into planning and designing an MRT. We provide a definition of causal excursion effects suitable for use in primary and secondary analyses of MRT data to inform JITAI development. We review the weighted and centered least-squares (WCLS) estimator which provides consistent causal excursion effect estimators from MRT data. We describe how the WCLS estimator along with associated test statistics can be obtained using standard statistical software such as R (R Core Team, 2019). Throughout we illustrate the MRT design and analyses using the HeartSteps MRT, for developing a JITAI to increase physical activity among sedentary individuals. We supplement the HeartSteps MRT with two other MRTs, SARA and BariFit, each of which highlights different research questions that can be addressed using the MRT and experimental design considerations that might arise.
Just-in-time adaptive interventions (JITAIs) are time-varying adaptive interventions that use frequent opportunities for the intervention to be adapted such as weekly, daily, or even many times a day. This high intensity of adaptation is facilitated
Developing spatio-temporal crime prediction models, and to a lesser extent, developing measures of accuracy and operational efficiency for them, has been an active area of research for almost two decades. Despite calls for rigorous and independent ev
Adaptive interventions (AIs) are increasingly becoming popular in medical and behavioral sciences. An AI is a sequence of individualized intervention options that specify for whom and under what conditions different intervention options should be off
Spatial prediction of weather-elements like temperature, precipitation, and barometric pressure are generally based on satellite imagery or data collected at ground-stations. None of these data provide information at a more granular or hyper-local re
A utility-based Bayesian population finding (BaPoFi) method was proposed by Morita and Muller (2017, Biometrics, 1355-1365) to analyze data from a randomized clinical trial with the aim of identifying good predictive baseline covariates for optimizin