ﻻ يوجد ملخص باللغة العربية
We investigate a dark energy scenario in which a canonical scalar field $phi$ is coupled to the four velocity $u_{c}^{mu}$ of cold dark matter (CDM) through a derivative interaction $u_{c}^{mu} partial_{mu} phi$. The coupling is described by an interacting Lagrangian $f(X, Z)$, where $f$ depends on $X=-partial^{mu} phi partial_{mu} phi/2$ and $Z=u_{c}^{mu} partial_{mu} phi$. We derive stability conditions of linear scalar perturbations for the wavelength deep inside the Hubble radius and show that the effective CDM sound speed is close to 0 as in the standard uncoupled case, while the scalar-field propagation speed is affected by the interacting term $f$. Under a quasi-static approximation, we also obtain a general expression of the effective gravitational coupling felt by the CDM perturbation. We study the late-time cosmological dynamics for the coupling $f propto X^{(2-m)/2}Z^m$ and show that the gravitational coupling weaker than the Newton constant can be naturally realized for $m>0$ on scales relevant to the growth of large-scale structures. This allows the possibility for alleviating the tension of $sigma_8$ between low- and high-redshift measurements.
For a scalar field $phi$ coupled to cold dark matter (CDM), we provide a general framework for studying the background and perturbation dynamics on the isotropic cosmological background. The dark energy sector is described by a Horndeski Lagrangian w
We study a coupled dark energy scenario in which a massive vector field $A_{mu}$ with broken $U(1)$ gauge symmetry interacts with the four-velocity $u_c^{mu}$ of cold dark matter (CDM) through the scalar product $Z=-u_c^{mu} A_{mu}$. This new couplin
We provide a general framework for studying the evolution of background and cosmological perturbations in the presence of a vector field $A_{mu}$ coupled to cold dark matter (CDM). We consider an interacting Lagrangian of the form $Q f(X) T_c$, where
We argue that the $Lambda$CDM tensions of the Hubble-Lemaitre expansion rate $H_0$ and the clustering normalization $sigma_8$ can be eased, at least in principle, by considering an interaction between dark energy and dark matter in such a way to indu
We show that the extended cosmological equation-of-state developed starting from a Chaplygin equation-of-state, recently applied to stellar modeling, is a viable dark energy model consistent with standard scalar potentials. Moreover we find a Lagrang