ﻻ يوجد ملخص باللغة العربية
We argue that the $Lambda$CDM tensions of the Hubble-Lemaitre expansion rate $H_0$ and the clustering normalization $sigma_8$ can be eased, at least in principle, by considering an interaction between dark energy and dark matter in such a way to induce a small and positive early effective equation of state and a weaker gravity. For a dark energy scalar field $phi$ interacting with dark matter through an exchange of both energy and momentum, we derive a general form of the Lagrangian allowing for the presence of scaling solutions. In a subclass of such interacting theories, we show the existence of a scaling $phi$-matter-dominated-era ($phi$MDE) which can potentially alleviate the $H_0$ tension by generating an effective high-redshift equation of state. We also study the evolution of perturbations for a model with $phi$MDE followed by cosmic acceleration and find that the effective gravitational coupling relevant to the linear growth of large-scale structures can be smaller than the Newton gravitational constant $G$ at low redshifts. The momentum exchange between dark energy and dark matter plays a crucial role for realizing weak gravity, while the energy transfer is also required for the existence of $phi$MDE.
In cubic-order Horndeski theories where a scalar field $phi$ is coupled to nonrelativistic matter with a field-dependent coupling $Q(phi)$, we derive the most general Lagrangian having scaling solutions on the isotropic and homogenous cosmological ba
We investigate a dark energy scenario in which a canonical scalar field $phi$ is coupled to the four velocity $u_{c}^{mu}$ of cold dark matter (CDM) through a derivative interaction $u_{c}^{mu} partial_{mu} phi$. The coupling is described by an inter
We study the dynamical aspects of dark energy in the context of a non-minimally coupled scalar field with curvature and torsion. Whereas the scalar field acts as the source of the trace mode of torsion, a suitable constraint on the torsion pseudo-tra
The Nobel Prize winning confirmation in 1998 of the accelerated expansion of our Universe put into sharp focus the need of a consistent theoretical model to explain the origin of this acceleration. As a result over the past two decades there has been
Non-canonical scalar fields with the Lagrangian ${cal L} = X^alpha - V(phi)$, possess the attractive property that the speed of sound, $c_s^{2} = (2,alpha - 1)^{-1}$, can be exceedingly small for large values of $alpha$. This allows a non-canonical f