ترغب بنشر مسار تعليمي؟ اضغط هنا

Lagrangian formulation for an extended cosmological equation-of-state

142   0   0.0 ( 0 )
 نشر من قبل Grigoris Panotopoulos
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the extended cosmological equation-of-state developed starting from a Chaplygin equation-of-state, recently applied to stellar modeling, is a viable dark energy model consistent with standard scalar potentials. Moreover we find a Lagrangian formulation based on a canonical scalar field with the appropriate self-interaction potential. Finally, we fit the scalar potential obtained numerically with concrete functions well studied in the literature. Our results may be of interest to model builders and particle physicists.



قيم البحث

اقرأ أيضاً

We use the ideas of entropic gravity to derive the FRW cosmological model and show that for late time evolution we have an effective cosmological constant. By using the first law of thermodynamics and the modified entropy area relationship derived fr om the supersymmetric Wheeler-DeWitt equation of the Schwarzschild black hole, we obtain modifications to the Friedmann equations that in the late time regime gives an effective positive cosmological constant. Therefore, this simple model can account for the dark energy component of the universe by providing an entropic origin to the cosmological constant $Lambda$.
We investigate the cosmological applications of fluids having an equation of state which is the analog to the one related to the isotropic deformation of crystalline solids, that is containing logarithmic terms of the energy density, allowing additio nally for a bulk viscosity. We consider two classes of scenarios and we show that they are both capable of triggering the transition from deceleration to acceleration at late times. Furthermore, we confront the scenarios with data from Supernovae type Ia (SN Ia) and Hubble function observations, showing that the agreement is excellent. Moreover, we perform a dynamical system analysis and we show that there exist asymptotic accelerating attractors, arisen from the logarithmic terms as well as from the viscosity, which in most cases correspond to a phantom late-time evolution. Finally, for some parameter regions we obtain a nearly de Sitter late-time attractor, which is a significant capability of the scenario since the dark energy, although dynamical, stabilizes at the cosmological constant value.
We investigate a dark energy scenario in which a canonical scalar field $phi$ is coupled to the four velocity $u_{c}^{mu}$ of cold dark matter (CDM) through a derivative interaction $u_{c}^{mu} partial_{mu} phi$. The coupling is described by an inter acting Lagrangian $f(X, Z)$, where $f$ depends on $X=-partial^{mu} phi partial_{mu} phi/2$ and $Z=u_{c}^{mu} partial_{mu} phi$. We derive stability conditions of linear scalar perturbations for the wavelength deep inside the Hubble radius and show that the effective CDM sound speed is close to 0 as in the standard uncoupled case, while the scalar-field propagation speed is affected by the interacting term $f$. Under a quasi-static approximation, we also obtain a general expression of the effective gravitational coupling felt by the CDM perturbation. We study the late-time cosmological dynamics for the coupling $f propto X^{(2-m)/2}Z^m$ and show that the gravitational coupling weaker than the Newton constant can be naturally realized for $m>0$ on scales relevant to the growth of large-scale structures. This allows the possibility for alleviating the tension of $sigma_8$ between low- and high-redshift measurements.
In scalar-vector-tensor (SVT) theories with parity invariance, we perform a gauge-ready formulation of cosmological perturbations on the flat Friedmann-Lema^{i}tre-Robertson-Walker (FLRW) background by taking into account a matter perfect fluid. We d erive the second-order action of scalar perturbations and resulting linear perturbation equations of motion without fixing any gauge conditions. Depending on physical problems at hand, most convenient gauges can be chosen to study the development of inhomogeneities in the presence of scalar and vector fields coupled to gravity. This versatile framework, which encompasses Horndeski and generalized Proca theories as special cases, is applicable to a wide variety of cosmological phenomena including nonsingular cosmology, inflation, and dark energy. By deriving conditions for the absence of ghost and Laplacian instabilities in several different gauges, we show that, unlike Horndeski theories, it is possible to evade no-go arguments for the absence of stable nonsingular bouncing/genesis solutions in both generalized Proca and SVT theories. We also apply our framework to the case in which scalar and vector fields are responsible for dark energy and find that the separation of observables relevant to the evolution of matter perturbations into tensor, vector, and scalar sectors is transparent in the unitary gauge. Unlike the flat gauge chosen in the literature, this result is convenient to confront SVT theories with observations associated with the cosmic growth history.
Using our recent proposal for defining gauge invariant averages we give a general-covariant formulation of the so-called cosmological backreaction. Our effective covariant equations allow us to describe in explicitly gauge invariant form the way clas sical or quantum inhomogeneities affect the average evolution of our Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا