ﻻ يوجد ملخص باللغة العربية
Skyrmions can be stabilized in magnetic systems with broken inversion symmetry and chiral interactions, such as Dzyaloshinskii-Moriya interactions (DMI). Further, compensation of magnetic moments in ferrimagnetic materials can significantly reduce magnetic dipolar interactions, which tend to favor large skyrmions. Tuning DMI is essential to control skyrmion properties, with symmetry breaking at interfaces offering the greatest flexibility. However, in contrast to the ferromagnet case, few studies have investigated interfacial DMI in ferrimagnets. Here we present a systematic study of DMI in ferrimagnetic CoGd films by Brillouin light scattering. We demonstrate the ability to control DMI by the CoGd cap layer composition, the stack symmetry and the ferrimagnetic layer thickness. The DMI thickness dependence confirms its interfacial nature. In addition, magnetic force microscopy reveals the ability to tune DMI in a range that stabilizes sub-100 nm skyrmions at room temperature in zero field. Our work opens new paths for controlling interfacial DMI in ferrimagnets to nucleate and manipulate skyrmions.
We present a systematic analysis of our ability to tune chiral Dzyaloshinskii-Moriya Interactions (DMI) in compensated ferrimagnetic Pt/GdCo/Pt1-xWx trilayers by cap layer composition. Using first principles calculations, we show that the DMI increas
The interfacial Dzyaloshinskii-Moriya interaction (DMI) in multilayers of heavy metal and ferromagnetic metals enables the stabilization of novel chiral spin structures such as skyrmions. Magnetic insulators, on the other hand can exhibit enhanced dy
Chiral spin textures at the interface between ferromagnetic and heavy nonmagnetic metals, such as Neel-type domain walls and skyrmions, have been studied intensively because of their great potential for future nanomagnetic devices. The Dyzaloshinskii
We have used Brillouin Light Scattering spectroscopy to independently determine the in-plane Magneto-Crystalline Anisotropy and the Dzyaloshinskii-Moriya Interaction (DMI) in out-of-plane magnetized Au/Co/W(110). We found that the DMI strength is 2-3
The interface between a ferromagnet (FM) or antiferromagnet (AFM) and a heavy metal (HM) results in an antisymmetric exchange interaction known as the interfacial Dzyaloshinskii-Moriya interaction (iDMI) which favors non-collinear spin configurations