ﻻ يوجد ملخص باللغة العربية
Chiral spin textures at the interface between ferromagnetic and heavy nonmagnetic metals, such as Neel-type domain walls and skyrmions, have been studied intensively because of their great potential for future nanomagnetic devices. The Dyzaloshinskii-Moriya interaction (DMI) is an essential phenomenon for the formation of such chiral spin textures. In spite of recent theoretical progress aiming at understanding the microscopic origin of the DMI, an experimental investigation unravelling the physics at stake is still required. Here, we experimentally demonstrate the close correlation of the DMI with the anisotropy of the orbital magnetic moment and with the magnetic dipole moment of the ferromagnetic metal. The density functional theory and the tight-binding model calculations reveal that asymmetric electron occupation in orbitals gives rise to this correlation.
The interface between a ferromagnet (FM) or antiferromagnet (AFM) and a heavy metal (HM) results in an antisymmetric exchange interaction known as the interfacial Dzyaloshinskii-Moriya interaction (iDMI) which favors non-collinear spin configurations
Topological defects such as magnetic solitons, vortices, Bloch lines, and skyrmions have started to play an important role in modern magnetism because of their extraordinary stability, which can be exploited in the production of memory devices. Recen
We show a method to control magnetic interfacial effects in multilayers with Dzyaloshinskii-Moriya interaction (DMI) using helium (He$^{+}$) ion irradiation. We compare results from SQUID magnetometry, ferromagnetic resonance as well as Brillouin lig
Chiral magnets are of fundamental interest and have important technological ramifications. The origin of chiral magnets lies in the Dzyaloshinskii-Moriya interaction (DMI), an interaction whose experimental and theoretical determination is laborious.
Spin waves can probe the Dzyaloshinskii-Moriya interaction (DMI) which gives rise to topological spin textures, such as skyrmions. However, the DMI has not yet been reported in yttrium iron garnet (YIG) with arguably the lowest damping for spin waves