ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning Dzyaloshinskii-Moriya Interaction in Ferrimagnetic GdCo: A First Principles Approach

133   0   0.0 ( 0 )
 نشر من قبل Md Golam Morshed
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a systematic analysis of our ability to tune chiral Dzyaloshinskii-Moriya Interactions (DMI) in compensated ferrimagnetic Pt/GdCo/Pt1-xWx trilayers by cap layer composition. Using first principles calculations, we show that the DMI increases rapidly for only ~ 10% W and saturates thereafter, in agreement with experiments. The calculated DMI shows a spread in values around the experimental mean, depending on the atomic configuration of the cap layer interface. The saturation is attributed to the vanishing of spin orbit coupling energy at the cap layer and the simultaneous constancy at the bottom interface. Additionally, we predict the DMI in Pt/GdCo/X (X=Ta, W, Ir) and find that W in the cap layer favors a higher DMI than Ta and Ir that can be attributed to the difference in d-band alignment around the Fermi level. Our results open up exciting combinatorial possibilities for controlling the DMI in ferrimagnets towards nucleating and manipulating ultrasmall high-speed skyrmions.



قيم البحث

اقرأ أيضاً

We present a Greens function approach to calculate the Dzyaloshinskii-Moriya interactions (DMI) from first principles electronic structure calculations, that is computationally more efficient and accurate than the most-commonly employed supercell and generalized Bloch-based approaches. The method is applied to the (111) Co/Pt bilayer where the Co- and/or Pt-thickness dependence of the DMI coefficients are calculated. Overall, the calculated DMI are in relatively good agreement with the corresponding values reported experimentally. Furthermore, we investigate the effect of strain in the DMI tensor elements and show that the isotropic N{e}el DMI can be significantly modulated by the normal strains, $epsilon_{xx},epsilon_{yy}$ and is relatively insensitive to the shear strain, $epsilon_{xy}$. Moreover, we show that anisotropic strains, $(epsilon_{xx}-epsilon_{yy})$ and $epsilon_{xy}$, result in the emergence of anisotropic N{e}el- and Bloch-type DMIs, respectively.
71 - Y. Quessab , J.-W. Xu , C. T. Ma 2019
Skyrmions can be stabilized in magnetic systems with broken inversion symmetry and chiral interactions, such as Dzyaloshinskii-Moriya interactions (DMI). Further, compensation of magnetic moments in ferrimagnetic materials can significantly reduce ma gnetic dipolar interactions, which tend to favor large skyrmions. Tuning DMI is essential to control skyrmion properties, with symmetry breaking at interfaces offering the greatest flexibility. However, in contrast to the ferromagnet case, few studies have investigated interfacial DMI in ferrimagnets. Here we present a systematic study of DMI in ferrimagnetic CoGd films by Brillouin light scattering. We demonstrate the ability to control DMI by the CoGd cap layer composition, the stack symmetry and the ferrimagnetic layer thickness. The DMI thickness dependence confirms its interfacial nature. In addition, magnetic force microscopy reveals the ability to tune DMI in a range that stabilizes sub-100 nm skyrmions at room temperature in zero field. Our work opens new paths for controlling interfacial DMI in ferrimagnets to nucleate and manipulate skyrmions.
The interfacial Dzyaloshinskii-Moriya interaction (DMI) in multilayers of heavy metal and ferromagnetic metals enables the stabilization of novel chiral spin structures such as skyrmions. Magnetic insulators, on the other hand can exhibit enhanced dy namics and properties such as lower magnetic damping and therefore it is of interest to combine the properties enabled by interfacial DMI with insulating systems. Here, we demonstrate the presence of interfacial DMI in heterostructures that include insulating magnetic layers. We use a bilayer of perpendicularly magnetized insulating thulium iron garnet (TmIG) and the heavy metal platinum, and find a surprisingly strong interfacial DMI that, combined with spin-orbit torque results, in efficient switching. The interfacial origin is confirmed through thickness dependence measurements of the DMI, revealing the characteristic 1/thickness dependence with one order of magnitude longer decay length compared to metallic layers. We combine chiral spin structures and spin-orbit torques for efficient switching and identify skyrmions that allow us to establish the GGG/TmIG interface as the origin of the DMI.
We have studied a series of Pt/Co/M epitaxial trilayers, in which Co is sandwiched between Pt and a non magnetic layer M (Pt, Ir, Cu, Al). Using polar magneto-optical Kerr microscopy, we show that the field- induced domain wall speeds are strongly de pendent on the nature of the top layer, they increase going from M=Pt to lighter top metallic overlayers, and can reach several 100 m/s for Pt/Co/Al. The DW dynamics is consistent with the presence of chiral Neel walls stabilized by interfacial Dzyaloshinskii-Moriya interaction (DMI) whose strength increases going from Pt to Al top layers. This is explained by the presence of DMI with opposite sign at the Pt/Co and Co/M interfaces, the latter increasing in strength going towards heavier atoms, possibly due to the increasing spin-orbit interaction. This work shows that in non-centrosymmetric trilayers the domain wall dynamics can be finely tuned by engineering the DMI strength, in view of efficient devices for logic and spitronics applications.
Brillouin light spectroscopy is a powerful and robust technique for measuring the interfacial Dzyaloshinskii-Moriya interaction in thin films with broken inversion symmetry. Here we show that the magnon visibility, i.e. the intensity of the inelastic ally scattered light, strongly depends on the thickness of the dielectric seed material - SiO$_2$. By using both, analytical thin-film optics and numerical calculations, we reproduce the experimental data. We therefore provide a guideline for the maximization of the signal by adapting the substrate properties to the geometry of the measurement. Such a boost-up of the signal eases the magnon visualization in ultrathin magnetic films, speeds-up the measurement and increases the reliability of the data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا