ﻻ يوجد ملخص باللغة العربية
We investigate, experimentally and theoretically, the dynamic optical hysteresis of a coherently driven cavity with non-instantaneous photon-photon interactions. By scanning the frequency detuning between the driving laser and the cavity resonance at different speeds across an optical bistability, we find a hysteresis area that is a non-monotonic function of the scanning speed. As the scanning speed increases and approaches the memory time of the photon-photon interactions, the hysteresis area decays following a power law with exponent -1. The exponent of this power law is independent of the system parameters. To reveal this universal scaling behavior theoretically, we introduce a memory kernel for the interaction term in the standard driven-dissipative Kerr model. Our results offer new perspectives for exploring non-Markovian dynamics of light using arrays of bistable cavities with low quality factors, driven by low laser powers, and at room temperature.
Photonic platforms are an excellent setting for quantum technologies because weak photon-environment coupling ensures long coherence times. The second key ingredient for quantum photonics is interactions between photons, which can be provided by opti
Optical cavity QED provides a platform with which to explore quantum many-body physics in driven-dissipative systems. Single-mode cavities provide strong, infinite-range photon-mediated interactions among intracavity atoms. However, these global all-
Proposed quantum networks require both a quantum interface between light and matter and the coherent control of quantum states. A quantum interface can be realized by entangling the state of a single photon with the state of an atomic or solid-state
We demonstrate several building blocks for an ion-photon interface based on a trapped Ca ion in an optical cavity. We identify a favorable experimental configuration and measure system parameters, including relative motion of the trapped ion and the
We study the dynamical process of braiding Majorana bound states in the presence of the coupling to photons in a microwave cavity. We show theoretically that the $pi/4$ phase associated with the braiding of Majoranas, as well as the parity of the gro