ﻻ يوجد ملخص باللغة العربية
Photonic platforms are an excellent setting for quantum technologies because weak photon-environment coupling ensures long coherence times. The second key ingredient for quantum photonics is interactions between photons, which can be provided by optical nonlinearities in the form of cross-phase-modulation (XPM). This approach underpins many proposed applications in quantum optics and information processing, but achieving its potential requires strong single-photon-level nonlinear phase shifts and also scalable nonlinear elements. In this work we show that the required nonlinearity can be provided by exciton-polaritons in micropillars with embedded quantum wells. These combine the strong interactions of excitons with the scalability of micrometer-sized emitters. We observe XPM up to $3 pm 1$ mrad per particle using laser beams attenuated to below single photon average intensity. With our work serving as a first stepping stone, we lay down a route for quantum information processing in polaritonic lattices.
Giant optical nonlinearity is observed under both continuous-wave and pulsed excitation in a deterministically-coupled quantum dot-micropillar system, in a pronounced strong-coupling regime. Using absolute reflectivity measurements we determine the c
We present a new micromechanical resonator designed for cavity optomechanics. We have used a micropillar geometry to obtain a high-frequency mechanical resonance with a low effective mass and a very high quality factor. We have coated a 60-$mu$m diam
We investigate, experimentally and theoretically, the dynamic optical hysteresis of a coherently driven cavity with non-instantaneous photon-photon interactions. By scanning the frequency detuning between the driving laser and the cavity resonance at
Arrays of quantum dot micropillar lasers are an attractive technology platform for various applications in the wider field of nanophotonics. Of particular interest is the potential efficiency enhancement as consequence of cavity quantum electrodynami
we investigate the transmission of probe laser beam in a coupled-cavity system with polaritons by using standard input-output relation of optical fields, and proposed a theoretical schema for realizing a polariton-based photonic transistor. On accoun