ﻻ يوجد ملخص باللغة العربية
We demonstrate several building blocks for an ion-photon interface based on a trapped Ca ion in an optical cavity. We identify a favorable experimental configuration and measure system parameters, including relative motion of the trapped ion and the resonator mode. A complete spectrum of cavity-assisted Raman transitions between the $4^{2}S_{1/2}$ and $3^{2}D_{5/2}$ manifolds is obtained. On two of these transitions, we generate orthogonally polarized cavity photons, and we demonstrate coherent manipulation of the corresponding pair of atomic states. Possible implementations of atom-photon entanglement and state mapping within the ion-cavity system are discussed.
Proposed quantum networks require both a quantum interface between light and matter and the coherent control of quantum states. A quantum interface can be realized by entangling the state of a single photon with the state of an atomic or solid-state
Strong coupling between an atom and an electromagnetic resonator is an important condition in cavity quantum electrodynamics (QED). While strong coupling in various physical systems has been achieved so far, it remained elusive for single atomic ions
We present a novel hybrid system where an optical cavity is integrated with a microfabricated planar-electrode ion trap. The trap electrodes produce a tunable periodic potential allowing the trapping of up to 50 separate ion chains spaced by 160 $mu$
A quantum network requires information transfer between distant quantum computers, which would enable distributed quantum information processing and quantum communication. One model for such a network is based on the probabilistic measurement of two
We propose a scheme to efficiently couple a single quantum dot electron spin to an optical nano-cavity, which enables us to simultaneously benefit from a cavity as an efficient photonic interface, as well as to perform high fidelity (nearly 100%) spi