ﻻ يوجد ملخص باللغة العربية
Most current approaches to characterize and detect hate speech focus on textit{content} posted in Online Social Networks. They face shortcomings to collect and annotate hateful speech due to the incompleteness and noisiness of OSN text and the subjectivity of hate speech. These limitations are often aided with constraints that oversimplify the problem, such as considering only tweets containing hate-related words. In this work we partially address these issues by shifting the focus towards textit{users}. We develop and employ a robust methodology to collect and annotate hateful users which does not depend directly on lexicon and where the users are annotated given their entire profile. This results in a sample of Twitters retweet graph containing $100,386$ users, out of which $4,972$ were annotated. We also collect the users who were banned in the three months that followed the data collection. We show that hateful users differ from normal ones in terms of their activity patterns, word usage and as well as network structure. We obtain similar results comparing the neighbors of hateful vs. neighbors of normal users and also suspended users vs. active users, increasing the robustness of our analysis. We observe that hateful users are densely connected, and thus formulate the hate speech detection problem as a task of semi-supervised learning over a graph, exploiting the network of connections on Twitter. We find that a node embedding algorithm, which exploits the graph structure, outperforms content-based approaches for the detection of both hateful ($95%$ AUC vs $88%$ AUC) and suspended users ($93%$ AUC vs $88%$ AUC). Altogether, we present a user-centric view of hate speech, paving the way for better detection and understanding of this relevant and challenging issue.
We investigate predictors of anti-Asian hate among Twitter users throughout COVID-19. With the rise of xenophobia and polarization that has accompanied widespread social media usage in many nations, online hate has become a major social issue, attrac
Hateful speech in Online Social Networks (OSNs) is a key challenge for companies and governments, as it impacts users and advertisers, and as several countries have strict legislation against the practice. This has motivated work on detecting and cha
The impact of online social media on societal events and institutions is profound; and with the rapid increases in user uptake, we are just starting to understand its ramifications. Social scientists and practitioners who model online discourse as a
An infodemic is an emerging phenomenon caused by an overabundance of information online. This proliferation of information makes it difficult for the public to distinguish trustworthy news and credible information from untrustworthy sites and non-cre
The COVID-19 pandemic is a global crisis that has been testing every society and exposing the critical role of local politics in crisis response. In the United States, there has been a strong partisan divide which resulted in polarization of individu