ﻻ يوجد ملخص باللغة العربية
A method is described to model the magnetic field in the vicinity of constellations of multiple satellites using field and plasma current measurements. This quadratic model has the properties that the divergence is zero everywhere and matches the measured values of the magnetic field and its curl (current) at each spacecraft, and thus extends the linear curlometer method to second order. It is able to predict the topology of the field lines near magnetic structures, such as near reconnecting regions or flux ropes, and allows a tracking of the motion of these structures relative to the spacecraft constellation. Comparisons to PIC simulations estimate the model accuracy. Reconstruction of two electron diffusion regions show the expected field line structure. The model can be applied to other small-scale phenomena (bow shock, waves of commensurate wavelength), and can be modified to reconstruct also the electric field, allowing tracing of particle trajectories.
We derive a new 3D model for magnetic particle imaging (MPI) that is able to incorporate realistic magnetic fields in the reconstruction process. In real MPI scanners, the generated magnetic fields have distortions that lead to deformed magnetic low-
We propose a new mass reconstruction technique for SUSY processes at the LHC. The idea is to completely solve the kinematics of the SUSY cascade decay by using the assumption that the selected events satisfy the same mass shell conditions of the spar
A new method for the reconstruction of the projected mass distribution of clusters of galaxies from the image distortion of background galaxies is discussed. This method is essentially equivalent to the one we developed previously, i.e., the noise-fi
A theoretically interesting and practically important question in cosmology is the reconstruction of the initial density distribution provided a late-time density field. This is a long-standing question with a revived interest recently, especially in
Based on the difference between the orientation of the interstellar $B_{ISM}$ and the solar magnetic fields, there was an expectation that the magnetic field direction would rotate dramatically across the heliopause (HP). However, the Voyager 1 space