ﻻ يوجد ملخص باللغة العربية
A theoretically interesting and practically important question in cosmology is the reconstruction of the initial density distribution provided a late-time density field. This is a long-standing question with a revived interest recently, especially in the context of optimally extracting the baryonic acoustic oscillation (BAO) signals from observed galaxy distributions. We present a new efficient method to carry out this reconstruction, which is based on numerical solutions to the nonlinear partial differential equation that governs the mapping between the initial Lagrangian and final Eulerian coordinates of particles in evolved density fields. This is motivated by numerical simulations of the quartic Galileon gravity model, which has similar equations that can be solved effectively by multigrid Gauss-Seidel relaxation. The method is based on mass conservation, and does not assume any specific cosmological model. Our test shows that it has a performance comparable to that of state-of-the-art algorithms which were very recently put forward in the literature, with the reconstructed density field over $sim80%$ ($50%$) correlated with the initial condition at $klesssim0.6h/{rm Mpc}$ ($1.0h/{rm Mpc}$). With an example, we demonstrate that this method can significantly improve the accuracy of BAO reconstruction.
We present a method for investigating variations in the upper end of the stellar Initial Mass Function (IMF) by probing the production rate of ionizing photons in unresolved, compact star clusters with ages <~10 Myr and with different masses. We test
We develop a maximum likelihood based method of reconstructing band powers of the density and velocity power spectra at each wavenumber bins from the measured clustering features of galaxies in redshift space, including marginalization over uncertain
We have pioneered a new method for the measurement of extragalactic distances. This method uses the time-lag between variations in the short wavelength and long wavelength light from an active galactic nucleus (AGN), based on a quantitative physical
We present a new method to measure the redshift-dependent galaxy bias by combining information from the galaxy density field and the weak lensing field. This method is based on Amara et al. (2012), where they use the galaxy density field to construct
Model independent reconstructions of dark energy have received some attention. The approach that addresses the reconstruction of the dimensionless coordinate distance and its two first derivatives using a polynomial fit in different redshift windows