ﻻ يوجد ملخص باللغة العربية
Based on the difference between the orientation of the interstellar $B_{ISM}$ and the solar magnetic fields, there was an expectation that the magnetic field direction would rotate dramatically across the heliopause (HP). However, the Voyager 1 spacecraft measured very little rotation across the HP. Previously we showed that the $B_{ISM}$ twists as it approaches the HP and acquires a strong T component (East-West). Here we establish that reconnection in the eastern flank of the heliosphere is responsible for the twist. On the eastern flank the solar magnetic field has twisted into the positive N direction and reconnects with the Southward pointing component of the $B_{ISM}$. Reconnection drives a rotational discontinuity (RD) that twists the $B_{ISM}$ into the -T direction and propagates upstream in the interstellar medium towards the nose. The consequence is that the N component of $B_{ISM}$ is reduced in a finite width band upstream of the HP. Voyager 1 currently measures angles ($delta=sin^{-1}(B_{N}/B)$) close to solar values. We present MHD simulations to support this scenario, suppressing reconnection in the nose region while allowing it in the flanks, consistent with recent ideas about reconnection suppression from diamagnetic drifts. The jump in plasma $beta$ (the plasma to magnetic pressure) across the nose of HP is much greater than in the flanks because the heliosheath $beta$ is greater there than in the flanks. Large-scale reconnection is therefore suppressed in the nose but not at the flanks. Simulation data suggest that $B_{ISM}$ will return to its pristine value $10-15~AU$ past the HP.
The twisted local magnetic field at the front or rear regions of the magnetic clouds (MCs) associated with interplanetary coronal mass ejections (ICMEs) is often nearly opposite to the direction of the ambient interplanetary magnetic field (IMF). The
This paper summarizes the results obtained by the team Heliosheath Processes and the Structure of the Heliopause: Modeling Energetic Particles, Cosmic Rays, and Magnetic Fields supported by the International Space Science Institute in Bern, Switzerla
A new look at the structure of the electron diffusion region in collisionless magnetic reconnection is presented. The research is based on a particle-in-cell simulation of asymmetric magnetic reconnection, which include a temperature gradient across
Maps of the radial magnetic field at a heliocentric distance of ten solar radii are used as boundary conditions in the MHD code CRONOS to simulate a 3D inner-heliospheric solar wind emanating from the rotating Sun out to 1 AU. The input data for the
Magnetic reconnection occurs when two plasmas having co-planar but anti-parallel magnetic fields meet. At the contact point, the field is locally annihilated and the magnetic energy can be released into the surrounding plasma. Theory and numerical mo