ترغب بنشر مسار تعليمي؟ اضغط هنا

A gravitational lensing detection of filamentary structures connecting luminous red galaxies

66   0   0.0 ( 0 )
 نشر من قبل Qianli Xia
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a weak lensing detection of filamentary structures in the cosmic web, combining data from the Kilo-Degree Survey, the Red Cluster Sequence Lensing Survey and the Canada-France-Hawaii Telescope Lensing Survey. The line connecting luminous red galaxies with a separation of $3 - 5, h^{-1}text{Mpc}$ is chosen as a proxy for the location of filaments. We measure the average weak lensing shear around $sim$11,000 candidate filaments selected in this way from the Sloan Digital Sky Survey. After nulling the shear induced by the dark matter haloes around each galaxy, we report a $3.4,sigma$ detection of an anisotropic shear signal from the matter that connects them. Adopting a filament density profile, motivated from $N$-body simulations, the average density at the centre of these filamentary structures is found to be $15 pm 4$ times the critical density.



قيم البحث

اقرأ أيضاً

In the standard model of non-linear structure formation, a cosmic web of dark-matter dominated filaments connects dark matter halos. In this paper, we stack the weak lensing signal of an ensemble of filaments between groups and clusters of galaxies. Specifically, we detect the weak lensing signal, using CFHTLenS galaxy ellipticities, from stacked filaments between SDSS-III/BOSS luminous red galaxies (LRGs). As a control, we compare the physical LRG pairs with projected LRG pairs that are more widely separated in redshift space. We detect the excess filament mass density in the projected pairs at the $5sigma$ level, finding a mass of $(1.6 pm 0.3) times 10^{13} M_{odot}$ for a stacked filament region 7.1 $h^{-1}$ Mpc long and 2.5 $h^{-1}$ Mpc wide. This filament signal is compared with a model based on the three-point galaxy-galaxy-convergence correlation function, as developed in Clampitt, Jain & Takada (2014), yielding reasonable agreement.
593 - Shogo Masaki 2012
We develop a novel abundance matching method to construct a mock catalog of luminous red galaxies (LRGs) in SDSS, using catalogs of halos and subhalos in N-body simulations for a LCDM model. Motivated by observations suggesting that LRGs are passivel y-evolving, massive early-type galaxies with a typical age >5Gyr, we assume that simulated halos at z=2 (z2-halo) are progenitors for LRG-host subhalos observed today, and we label the most tightly bound particles in each progenitor z2-halo as LRG ``stars. We then identify the subhalos containing these stars to z=0.3 (SDSS redshift) in descending order of the masses of z2-halos until the comoving number density of the matched subhalos becomes comparable to the measured number density of SDSS LRGs, n=10^{-4} (h/Mpc)^3. Once the above prescription is determined, our only free parameter is the number density of halos identified at z=2 and this parameter is fixed to match the observed number density at z = 0.3. By tracing subsequent merging and assembly histories of each progenitor z2-halo, we can directly compute, from the mock catalog, the distributions of central and satellite LRGs and their internal motions in each host halo at z=0.3. While the SDSS LRGs are galaxies selected by the magnitude and color cuts from the SDSS images and are not necessarily a stellar-mass-selected sample, our mock catalog reproduces a host of SDSS measurements: the halo occupation distribution for central and satellite LRGs, the projected auto-correlation function of LRGs, the cross-correlation of LRGs with shapes of background galaxies (LRG-galaxy weak lensing), and the nonlinear redshift-space distortion effect, the Finger-of-God effect, in the angle-averaged redshift-space power spectrum.
With increasing sensitivities of the current ground-based gravitational-wave (GW) detectors, the prospects of detecting a strongly lensed GW signal are going to be high in the coming years. When such a signal passes through an intervening lensing gal axy or galaxy cluster, the embedded stellar-mass microlenses lead to interference patterns in the signal that may leave observable signatures. In this work, we present an extensive study of these wave effects in the LIGO/Virgo frequency band ($10$-$10^4$ Hz) due to the presence of the microlens population in galaxy-scale lenses for the first time. We consider a wide range of strong lensing (macro) magnifications and the corresponding surface microlens densities found in lensing galaxies and use them to generate realisations of the amplification factor. The methodologies for simulating amplification curves for both types of images (minima and saddle points) are also discussed. We then study how microlensing is broadly affected by the parameters like macro-magnifications, stellar densities, the initial mass function (IMF), types of images, and microlens distribution around the source. In general, with increasing macro-magnification values, the effects of microlensing become increasingly significant regardless of other parameters. Mismatch analysis between the lensed and the unlensed GW waveforms from chirping binaries suggests that, while inferring the source parameters, microlensing can not be neglected for macro-magnification $gtrsim 15$. Furthermore, for extremely high macro-magnifications $gtrsim 100$, the mismatch can even exceed $5%$, which can result in both a missed detection and, consequently, a missed lensed signal.
We use the overlap between multiband photometry of the Kilo-Degree Survey (KiDS) and spectroscopic data based on the Sloan Digital Sky Survey (SDSS) and Galaxy And Mass Assembly (GAMA) to infer the colour-magnitude relation of red-sequence galaxies. We then use this inferred relation to select luminous red galaxies (LRGs) in the redshift range of $0.1<z<0.7$ over the entire KiDS Data Release 3 footprint. We construct two samples of galaxies with different constant comoving densities and different luminosity thresholds. The selected red galaxies have photometric redshifts with typical photo-z errors of $sigma_z sim 0.014 (1+z)$ that are nearly uniform with respect to observational systematics. This makes them an ideal set of galaxies for lensing and clustering studies. As an example, we use the KiDS-450 cosmic shear catalogue to measure the mean tangential shear signal around the selected LRGs. We detect a significant weak lensing signal for lenses out to $z sim 0.7$.
We discuss the gravitational lensing of gravitational wave signals from coalescing binaries. We delineate the regime where wave effects are significant from the regime where geometric limit can be used. Further, we focus on the effect of micro-lensin g and the combined effect of strong lensing and micro-lensing. We find that micro-lensing combined with strong lensing can introduce time varying phase shift in the signal and hence can lead to detectable differences in the signal observed for different images produced by strong lensing. This, coupled with the coarse localization of signal source in the sky for gravitational wave detections, can make it difficult to identify the common origin of signal corresponding to different images and use observables like time delay. In case we can reliably identify corresponding images, micro-lensing of individual images can be used as a tool to constrain properties of micro-lenses. Sources of gravitational waves can undergo microlensing due to lenses in the disk/halo of the Galaxy, or due to lenses in an intervening galaxy even in absence of strong lensing. In general the probability for this is small with one exception: Extragalactic sources of gravitational waves that lie in the galactic plane are highly likely to be micro-lensed. Wave effects are extremely important for such cases. In case of detections of such sources with low SNR, the uncertainty of occurrence of microlensing or otherwise introduces an additional uncertainty in the parameters of the source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا