ﻻ يوجد ملخص باللغة العربية
We develop a novel abundance matching method to construct a mock catalog of luminous red galaxies (LRGs) in SDSS, using catalogs of halos and subhalos in N-body simulations for a LCDM model. Motivated by observations suggesting that LRGs are passively-evolving, massive early-type galaxies with a typical age >5Gyr, we assume that simulated halos at z=2 (z2-halo) are progenitors for LRG-host subhalos observed today, and we label the most tightly bound particles in each progenitor z2-halo as LRG ``stars. We then identify the subhalos containing these stars to z=0.3 (SDSS redshift) in descending order of the masses of z2-halos until the comoving number density of the matched subhalos becomes comparable to the measured number density of SDSS LRGs, n=10^{-4} (h/Mpc)^3. Once the above prescription is determined, our only free parameter is the number density of halos identified at z=2 and this parameter is fixed to match the observed number density at z = 0.3. By tracing subsequent merging and assembly histories of each progenitor z2-halo, we can directly compute, from the mock catalog, the distributions of central and satellite LRGs and their internal motions in each host halo at z=0.3. While the SDSS LRGs are galaxies selected by the magnitude and color cuts from the SDSS images and are not necessarily a stellar-mass-selected sample, our mock catalog reproduces a host of SDSS measurements: the halo occupation distribution for central and satellite LRGs, the projected auto-correlation function of LRGs, the cross-correlation of LRGs with shapes of background galaxies (LRG-galaxy weak lensing), and the nonlinear redshift-space distortion effect, the Finger-of-God effect, in the angle-averaged redshift-space power spectrum.
Nonlinear redshift-space distortions, the Finger-of-God (FoG) effect, can complicate the interpretation of the galaxy power spectrum. Here, we demonstrate the method proposed by Hikage et al. (2012) to use complimentary observations to directly const
The magnification effect of gravitational lensing is a powerful probe of the distribution of matter in the universe, yet it is frequently overlooked due to the fact that its signal to noise is smaller than that of lensing shear. Because its systemati
We present a weak lensing detection of filamentary structures in the cosmic web, combining data from the Kilo-Degree Survey, the Red Cluster Sequence Lensing Survey and the Canada-France-Hawaii Telescope Lensing Survey. The line connecting luminous r
We study the projected radial distribution of satellite galaxies around more than 28,000 Luminous Red Galaxies (LRGs) at 0.28<z<0.40 and trace the gravitational potential of LRG groups in the range 15<r/kpc<700. We show that at large radii the satell
Using high resolution cosmological hydrodynamical simulations of Milky Way-massed disk galaxies, we demonstrate that supernovae feedback and tidal stripping lower the central masses of bright (-15 < M_V < -8) satellite galaxies. These simulations res