ﻻ يوجد ملخص باللغة العربية
We use the overlap between multiband photometry of the Kilo-Degree Survey (KiDS) and spectroscopic data based on the Sloan Digital Sky Survey (SDSS) and Galaxy And Mass Assembly (GAMA) to infer the colour-magnitude relation of red-sequence galaxies. We then use this inferred relation to select luminous red galaxies (LRGs) in the redshift range of $0.1<z<0.7$ over the entire KiDS Data Release 3 footprint. We construct two samples of galaxies with different constant comoving densities and different luminosity thresholds. The selected red galaxies have photometric redshifts with typical photo-z errors of $sigma_z sim 0.014 (1+z)$ that are nearly uniform with respect to observational systematics. This makes them an ideal set of galaxies for lensing and clustering studies. As an example, we use the KiDS-450 cosmic shear catalogue to measure the mean tangential shear signal around the selected LRGs. We detect a significant weak lensing signal for lenses out to $z sim 0.7$.
We study projected underdensities in the cosmic galaxy density field known as troughs, and their overdense counterparts, which we call ridges. We identify these regions using a bright sample of foreground galaxies from the photometric Kilo-Degree Sur
In the standard model of non-linear structure formation, a cosmic web of dark-matter dominated filaments connects dark matter halos. In this paper, we stack the weak lensing signal of an ensemble of filaments between groups and clusters of galaxies.
We present a sample of luminous red-sequence galaxies to study the large-scale structure in the fourth data release of the Kilo-Degree Survey. The selected galaxies are defined by a red-sequence template, in the form of a data-driven model of the col
The Kilo Degree Survey (KiDS) is a 1500 square degree optical imaging survey with the recently commissioned OmegaCAM wide-field imager on the VLT Survey Telescope (VST). A suite of data products will be delivered to the European Southern Observatory
We present a catalog of quasars and corresponding redshifts in the Kilo-Degree Survey (KiDS) Data Release 4. We trained machine learning (ML) models, using optical ugri and near-infrared ZYJHK_s bands, on objects known from Sloan Digital Sky Survey (