ﻻ يوجد ملخص باللغة العربية
In this article we study how bad can be the singularities of a time-optimal trajectory of a generic control affine system. In the case where the control is scalar and belongs to a closed interval it was recently shown in [6] that singularities cannot be, generically, worse than finite order accumulations of Fuller points, with order of accumulation lower than a bound depending only on the dimension of the manifold where the system is set. We extend here such a result to the case where the control has an even number of scalar components and belongs to a closed ball.
We consider in this paper the regularity problem for time-optimal trajectories of a single-input control-affine system on a n-dimensional manifold. We prove that, under generic conditions on the drift and the controlled vector field, any control u as
This manuscript presents an algorithm for obtaining an approximation of nonlinear high order control affine dynamical systems, that leverages the controlled trajectories as the central unit of information. As the fundamental basis elements leveraged
For homogeneous bilinear control systems, the control sets are characterized using a Lie algebra rank condition for the induced systems on projective space. This is based on a classical Diophantine approximation result. For affine control systems, th
We consider the covariance steering problem for nonlinear control-affine systems. Our objective is to find an optimal control strategy to steer the state of a system from an initial distribution to a target one whose mean and covariance are given. Du
- In this paper we introduce a new method to solve fixed-delay optimal control problems which exploits numerical homotopy procedures. It is known that solving this kind of problems via indirect methods is complex and computationally demanding because