ﻻ يوجد ملخص باللغة العربية
We consider the covariance steering problem for nonlinear control-affine systems. Our objective is to find an optimal control strategy to steer the state of a system from an initial distribution to a target one whose mean and covariance are given. Due to the nonlinearity, the existing techniques for linear covariance steering problems are not directly applicable. By leveraging the celebrated Girsanov theorem, we formulate the problem into an optimization over the space path distributions. We then adopt a generalized proximal gradient algorithm to solve this optimization, where each update requires solving a linear covariance steering problem. Our algorithm is guaranteed to converge to a local optimal solution with a sublinear rate. In addition, each iteration of the algorithm can be achieved in closed form, and thus the computational complexity of it is insensitive to the resolution of time-discretization.
In this paper, we propose an incremental abstraction method for dynamically over-approximating nonlinear systems in a bounded domain by solving a sequence of linear programs, resulting in a sequence of affine upper and lower hyperplanes with expandin
This manuscript presents an algorithm for obtaining an approximation of nonlinear high order control affine dynamical systems, that leverages the controlled trajectories as the central unit of information. As the fundamental basis elements leveraged
Robust control is a core approach for controlling systems with performance guarantees that are robust to modeling error, and is widely used in real-world systems. However, current robust control approaches can only handle small system uncertainty, an
This paper studies the extremum seeking control (ESC) problem for a class of constrained nonlinear systems. Specifically, we focus on a family of constraints allowing to reformulate the original nonlinear system in the so-called input-output normal f
A new belief space planning algorithm, called covariance steering Belief RoadMap (CS-BRM), is introduced, which is a multi-query algorithm for motion planning of dynamical systems under simultaneous motion and observation uncertainties. CS-BRM extend