ﻻ يوجد ملخص باللغة العربية
In this work we obtain an anisotropic neutron star solution by gravitational decoupling starting from a perfect fluid configuration which has been used to model the compact object PSR J0348+0432. Additionally, we consider the same solution to model the Binary Pulsar SAX J1808.4-3658 and X-ray Binaries Her X-1 and Cen X-3 ones. We study the acceptability conditions and obtain that the MGD--deformed solution obey the same physical requirements as its isotropic counterpart. Finally, we conclude that the most stable solutions, according to the adiabatic index and gravitational cracking criterion, are those with the smallest compactness parameters, namely SAX J1808.4-3658 and Her X-1.
Using the gravitational decoupling by the minimal geometric deformation approach, we build an anisotropic version of the well-known Tolman VII solution, determining an exact and physically acceptable interior two-fluid solution that can represent beh
In this work we construct an ultracompact star configuration in the framework of Gravitational Decoupling by the Minimal Geometric Deformation approach. We use the complexity factor as a complementary condition to close the system of differential equ
Black holes with hair represented by generic fields surrounding the central source of the vacuum Schwarzschild metric are examined under the minimal set of requirements consisting of i) the existence of a well defined event horizon and ii) the strong
We employ the gravitational decoupling approach for static and spherically symmetric systems to develop a simple and powerful method in order to a) continuously isotropize any anisotropic solution of the Einstein field equations, and b) generate new
In this paper, we consider the mimetic gravitational theory to derive a novel category of anisotropic star models. To end and to put the resulting differential equations into a closed system, the form of the metric potential $g_{rr}$ as used by Tolma