ﻻ يوجد ملخص باللغة العربية
Black holes with hair represented by generic fields surrounding the central source of the vacuum Schwarzschild metric are examined under the minimal set of requirements consisting of i) the existence of a well defined event horizon and ii) the strong or dominant energy condition for the hair outside the horizon. We develop our analysis by means of the gravitational decoupling approach. We find that trivial deformations of the seed Schwarzschild vacuum preserve the energy conditions and provide a new mechanism to evade the no-hair theorem based on a primary hair associated with the charge generating these transformations. Under the above conditions i) and ii), this charge consistently increases the entropy from the minimum value given by the Schwarzschild geometry. As a direct application, we find a non-trivial extension of the Reissner-Nordstrom black hole showing a surprisingly simple horizon. Finally, the non-linear electrodynamics generating this new solution is fully specified.
Hairy black holes in the gravitational decoupling setup are studied from the perspective of conformal anomalies. Fluctuations of decoupled sources can be computed by measuring the way the trace anomaly-to-holographic Weyl anomaly ratio differs from u
In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hai
We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and an U(1) electromagnetic field. Solving the coupled Einstein-Maxwell-scalar system we find exact hairy charged black hole
In a recent paper (Phys. Dark Univ. {bf 31}, 100744 (2021)) it has been obtained new static black hole solutions with primary hairs by the Gravitational Decoupling. In this work we either study the geodesic motion of massive and massless particles ar
We present an exact static black hole solution of Einstein field equations in the framework of Horndeski Theory by imposing spherical symmetry and choosing the coupling constants in the Lagrangian so that the only singularity in the solution is at $r