ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the mimetic gravitational theory to derive a novel category of anisotropic star models. To end and to put the resulting differential equations into a closed system, the form of the metric potential $g_{rr}$ as used by Tolman (Tolman 1939) is assumed as well as a linear form of the equation-of-state. The resulting energy-momentum components, energy-density, and radial and tangential pressures contain five constants; three of these are determined through the junction condition, matching the interior with the exterior Schwarzschild solution the fourth is constrained by the vanishing of the radial pressure on the boundary and the fifth is constrained by a real compact star. The physical acceptability of our model is tested using the data of the pulsar 4U 1820-30. The stability of this model is evaluated using the Tolman-Oppenheimer-Volkoff equation and the adiabatic index and it is shown to be stable. Finally, our model is challenged with other compact stars demonstrating that it is consistent with those stars.
In this paper, we shall consider spherically symmetric spacetime solutions describing the interior of stellar compact objects, in the context of higher-order curvature theory of the f(R) type. We shall derive the non--vacuum field equations of the hi
We derive a new interior solution for stellar compact objects in $fmathcal{(R)}$ gravity assuming a differential relation to constrain the Ricci curvature scalar. To this aim, we consider specific forms for the radial component of the metric and the
We construct several new classes of black hole (BH) solutions in the context of the mimetic Euler-Heisenberg theory. We separately derive three differently charged BH solutions and their relevant mimetic forms. We show that the asymptotic form of all
In this paper, we employ mimetic $f(R,T)$ gravity coupled with Lagrange multiplier and mimetic potential to yield viable inflationary cosmological solutions consistent with latest Planck and BICEP2/Keck Array data. We present here three viable inflat
In this work we obtain an anisotropic neutron star solution by gravitational decoupling starting from a perfect fluid configuration which has been used to model the compact object PSR J0348+0432. Additionally, we consider the same solution to model t