ﻻ يوجد ملخص باللغة العربية
The family of rank estimators, including Hans maximum rank correlation (Han, 1987) as a notable example, has been widely exploited in studying regression problems. For these estimators, although the linear index is introduced for alleviating the impact of dimensionality, the effect of large dimension on inference is rarely studied. This paper fills this gap via studying the statistical properties of a larger family of M-estimators, whose objective functions are formulated as U-processes and may be discontinuous in increasing dimension set-up where the number of parameters, $p_{n}$, in the model is allowed to increase with the sample size, $n$. First, we find that often in estimation, as $p_{n}/nrightarrow 0$, $(p_{n}/n)^{1/2}$ rate of convergence is obtainable. Second, we establish Bahadur-type bounds and study the validity of normal approximation, which we find often requires a much stronger scaling requirement than $p_{n}^{2}/nrightarrow 0.$ Third, we state conditions under which the numerical derivative estimator of asymptotic covariance matrix is consistent, and show that the step size in implementing the covariance estimator has to be adjusted with respect to $p_{n}$. All theoretical results are further backed up by simulation studies.
This paper studies inference in linear models whose parameter of interest is a high-dimensional matrix. We focus on the case where the high-dimensional matrix parameter is well-approximated by a ``spiked low-rank matrix whose rank grows slowly compar
Robust methods, though ubiquitous in practice, are yet to be fully understood in the context of regularized estimation and high dimensions. Even simple questions become challenging very quickly. For example, classical statistical theory identifies eq
Recently, Kabaila and Wijethunga assessed the performance of a confidence interval centred on a bootstrap smoothed estimator, with width proportional to an estimator of Efrons delta method approximation to the standard deviation of this estimator. Th
This paper considers inference for a function of a parameter vector in a partially identified model with many moment inequalities. This framework allows the number of moment conditions to grow with the sample size, possibly at exponential rates. Our
We consider batch size selection for a general class of multivariate batch means variance estimators, which are computationally viable for high-dimensional Markov chain Monte Carlo simulations. We derive the asymptotic mean squared error for this cla