ترغب بنشر مسار تعليمي؟ اضغط هنا

Subvector Inference in Partially Identified Models with Many Moment Inequalities

139   0   0.0 ( 0 )
 نشر من قبل Alexandre Belloni
 تاريخ النشر 2018
  مجال البحث اقتصاد
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper considers inference for a function of a parameter vector in a partially identified model with many moment inequalities. This framework allows the number of moment conditions to grow with the sample size, possibly at exponential rates. Our main motivating application is subvector inference, i.e., inference on a single component of the partially identified parameter vector associated with a treatment effect or a policy variable of interest. Our inference method compares a MinMax test statistic (minimum over parameters satisfying $H_0$ and maximum over moment inequalities) against critical values that are based on bootstrap approximations or analytical bounds. We show that this method controls asymptotic size uniformly over a large class of data generating processes despite the partially identified many moment inequality setting. The finite sample analysis allows us to obtain explicit rates of convergence on the size control. Our results are based on combining non-asymptotic approximations and new high-dimensional central limit theorems for the MinMax of the components of random matrices. Unlike the previous literature on functional inference in partially identified models, our results do not rely on weak convergence results based on Donskers class assumptions and, in fact, our test statistic may not even converge in distribution. Our bootstrap approximation requires the choice of a tuning parameter sequence that can avoid the excessive concentration of our test statistic. To this end, we propose an asymptotically valid data-driven method to select this tuning parameter sequence. This method generalizes the selection of tuning parameter sequences to problems outside the Donskers class assumptions and may also be of independent interest. Our procedures based on self-normalized moderate deviation bounds are relatively more conservative but easier to implement.



قيم البحث

اقرأ أيضاً

This paper considers the problem of testing many moment inequalities where the number of moment inequalities, denoted by $p$, is possibly much larger than the sample size $n$. There is a variety of economic applications where solving this problem all ows to carry out inference on causal and structural parameters, a notable example is the market structure model of Ciliberto and Tamer (2009) where $p=2^{m+1}$ with $m$ being the number of firms that could possibly enter the market. We consider the test statistic given by the maximum of $p$ Studentized (or $t$-type) inequality-specific statistics, and analyze various ways to compute critical values for the test statistic. Specifically, we consider critical values based upon (i) the union bound combined with a moderate deviation inequality for self-normalized sums, (ii) the multiplier and empirical bootstraps, and (iii) two-step and three-step variants of (i) and (ii) by incorporating the selection of uninformative inequalities that are far from being binding and a novel selection of weakly informative inequalities that are potentially binding but do not provide first order information. We prove validity of these methods, showing that under mild conditions, they lead to tests with the error in size decreasing polynomially in $n$ while allowing for $p$ being much larger than $n$, indeed $p$ can be of order $exp (n^{c})$ for some $c > 0$. Importantly, all these results hold without any restriction on the correlation structure between $p$ Studentized statistics, and also hold uniformly with respect to suitably large classes of underlying distributions. Moreover, in the online supplement, we show validity of a test based on the block multiplier bootstrap in the case of dependent data under some general mixing conditions.
A general class of time-varying regression models is considered in this paper. We estimate the regression coefficients by using local linear M-estimation. For these estimators, weak Bahadur representations are obtained and are used to construct simul taneous confidence bands. For practical implementation, we propose a bootstrap based method to circumvent the slow logarithmic convergence of the theoretical simultaneous bands. Our results substantially generalize and unify the treatments for several time-varying regression and auto-regression models. The performance for ARCH and GARCH models is studied in simulations and a few real-life applications of our study are presented through analysis of some popular financial datasets.
This paper studies inference in linear models whose parameter of interest is a high-dimensional matrix. We focus on the case where the high-dimensional matrix parameter is well-approximated by a ``spiked low-rank matrix whose rank grows slowly compar ed to its dimensions and whose nonzero singular values diverge to infinity. We show that this framework covers a broad class of models of latent-variables which can accommodate matrix completion problems, factor models, varying coefficient models, principal components analysis with missing data, and heterogeneous treatment effects. For inference, we propose a new ``rotation-debiasing method for product parameters initially estimated using nuclear norm penalization. We present general high-level results under which our procedure provides asymptotically normal estimators. We then present low-level conditions under which we verify the high-level conditions in a treatment effects example.
We propose two types of Quantile Graphical Models (QGMs) --- Conditional Independence Quantile Graphical Models (CIQGMs) and Prediction Quantile Graphical Models (PQGMs). CIQGMs characterize the conditional independence of distributions by evaluating the distributional dependence structure at each quantile index. As such, CIQGMs can be used for validation of the graph structure in the causal graphical models (cite{pearl2009causality, robins1986new, heckman2015causal}). One main advantage of these models is that we can apply them to large collections of variables driven by non-Gaussian and non-separable shocks. PQGMs characterize the statistical dependencies through the graphs of the best linear predictors under asymmetric loss functions. PQGMs make weaker assumptions than CIQGMs as they allow for misspecification. Because of QGMs ability to handle large collections of variables and focus on specific parts of the distributions, we could apply them to quantify tail interdependence. The resulting tail risk network can be used for measuring systemic risk contributions that help make inroads in understanding international financial contagion and dependence structures of returns under downside market movements. We develop estimation and inference methods for QGMs focusing on the high-dimensional case, where the number of variables in the graph is large compared to the number of observations. For CIQGMs, these methods and results include valid simultaneous choices of penalty functions, uniform rates of convergence, and confidence regions that are simultaneously valid. We also derive analogous results for PQGMs, which include new results for penalized quantile regressions in high-dimensional settings to handle misspecification, many controls, and a continuum of additional conditioning events.
In this paper we study methods for estimating causal effects in settings with panel data, where some units are exposed to a treatment during some periods and the goal is estimating counterfactual (untreated) outcomes for the treated unit/period combi nations. We propose a class of matrix completion estimators that uses the observed elements of the matrix of control outcomes corresponding to untreated unit/periods to impute the missing elements of the control outcome matrix, corresponding to treated units/periods. This leads to a matrix that well-approximates the original (incomplete) matrix, but has lower complexity according to the nuclear norm for matrices. We generalize results from the matrix completion literature by allowing the patterns of missing data to have a time series dependency structure that is common in social science applications. We present novel insights concerning the connections between the matrix completion literature, the literature on interactive fixed effects models and the literatures on program evaluation under unconfoundedness and synthetic control methods. We show that all these estimators can be viewed as focusing on the same objective function. They differ solely in the way they deal with identification, in some cases solely through regularization (our proposed nuclear norm matrix completion estimator) and in other cases primarily through imposing hard restrictions (the unconfoundedness and synthetic control approaches). The proposed method outperforms unconfoundedness-based or synthetic control estimators in simulations based on real data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا