ترغب بنشر مسار تعليمي؟ اضغط هنا

Batch size selection for variance estimators in MCMC

132   0   0.0 ( 0 )
 نشر من قبل James M. Flegal
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider batch size selection for a general class of multivariate batch means variance estimators, which are computationally viable for high-dimensional Markov chain Monte Carlo simulations. We derive the asymptotic mean squared error for this class of estimators. Further, we propose a parametric technique for estimating optimal batch sizes and discuss practical issues regarding the estimating process. Vector auto-regressive, Bayesian logistic regression, and Bayesian dynamic space-time examples illustrate the quality of the estimation procedure where the proposed optimal batch sizes outperform current batch size selection methods.



قيم البحث

اقرأ أيضاً

This paper proposes a family of weighted batch means variance estimators, which are computationally efficient and can be conveniently applied in practice. The focus is on Markov chain Monte Carlo simulations and estimation of the asymptotic covarianc e matrix in the Markov chain central limit theorem, where conditions ensuring strong consistency are provided. Finite sample performance is evaluated through auto-regressive, Bayesian spatial-temporal, and Bayesian logistic regression examples, where the new estimators show significant computational gains with a minor sacrifice in variance compared with existing methods.
Calculating a Monte Carlo standard error (MCSE) is an important step in the statistical analysis of the simulation output obtained from a Markov chain Monte Carlo experiment. An MCSE is usually based on an estimate of the variance of the asymptotic n ormal distribution. We consider spectral and batch means methods for estimating this variance. In particular, we establish conditions which guarantee that these estimators are strongly consistent as the simulation effort increases. In addition, for the batch means and overlapping batch means methods we establish conditions ensuring consistency in the mean-square sense which in turn allows us to calculate the optimal batch size up to a constant of proportionality. Finally, we examine the empirical finite-sample properties of spectral variance and batch means estimators and provide recommendations for practitioners.
The problem of estimating ARMA models is computationally interesting due to the nonconcavity of the log-likelihood function. Recent results were based on the convex minimization. Joint model selection using penalization by a convex norm, e.g. the nuc lear norm of a certain matrix related to the state space formulation was extensively studied from a computational viewpoint. The goal of the present short note is to present a theoretical study of a nuclear norm penalization based variant of the method of cite{Bauer:Automatica05,Bauer:EconTh05} under the assumption of a Gaussian noise process.
Markov chain Monte Carlo (MCMC) algorithms are used to estimate features of interest of a distribution. The Monte Carlo error in estimation has an asymptotic normal distribution whose multivariate nature has so far been ignored in the MCMC community. We present a class of multivariate spectral variance estimators for the asymptotic covariance matrix in the Markov chain central limit theorem and provide conditions for strong consistency. We examine the finite sample properties of the multivariate spectral variance estimators and its eigenvalues in the context of a vector autoregressive process of order 1.
69 - Vivekananda Roy , Aixin Tan , 2015
The naive importance sampling estimator, based on samples from a single importance density, can be numerically unstable. Instead, we consider generalized importance sampling estimators where samples from more than one probability distribution are com bined. We study this problem in the Markov chain Monte Carlo context, where independent samples are replaced with Markov chain samples. If the chains converge to their respective target distributions at a polynomial rate, then under two finite moment conditions, we show a central limit theorem holds for the generalized estimators. Further, we develop an easy to implement method to calculate valid asymptotic standard errors based on batch means. We also provide a batch means estimator for calculating asymptotically valid standard errors of Geyer(1994) reverse logistic estimator. We illustrate the method using a Bayesian variable selection procedure in linear regression. In particular, the generalized importance sampling estimator is used to perform empirical Bayes variable selection and the batch means estimator is used to obtain standard errors in a high-dimensional setting where current methods are not applicable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا