ﻻ يوجد ملخص باللغة العربية
We introduce a 3-Higgs Doublet Model (3HDM) with two Inert (or dark) scalar doublets and an active Higgs one, hence termed I(2+1)HDM, in the presence of a discrete $Z_3$ symmetry acting upon the three doublet fields. We show that such a construct yields a Dark Matter (DM) sector with two mass-degenerate states of opposite CP parity, both of which contribute to DM dynamics, which we call textit{Hermaphrodite DM}, distinguishable from a (single) complex DM candidate. We show that the relic density contributions of both states are equal, saturating the observed relic density compliant with (in)direct searches for DM as well as other experimental data impinging on both the dark and Higgs sectors of the model, chiefly, in the form of Electro-Weak Precision Observables (EWPOs), Standard Model (SM)-like Higgs boson measurements at the Large Hadron Collider (LHC) and void searches for additional (pseudo)scalar states at the CERN machine and previous colliders.
As an effective model corresponding to $Z_3$-symmetric QCD ($Z_3$-QCD), we construct a $Z_3$-symmetric effective Polyakov-line model ($Z_3$-EPLM) by using the logarithmic fermion effective action. Since $Z_3$-QCD tends to QCD in the zero temperature
Inspired by the fact that relatively small values of the effective higgsino mass parameter of the $Z_3$-symmetric Next-to-Minimal Supersymmetric Standard Model (NMSSM) could render the scenario `natural, we explore the plausibility of having relative
The stability of the magnetization $m=1/3$ plateau phase of the XXZ spin-1/2 Heisenberg chain with competing interactions is investigated upon switching on a staggered transverse magnetic field. Within a bosonization approach, it is shown that the lo
A highly bino-like Dark Matter (DM), which is the Lightest Supersymmetric Particle (LSP), could be motivated by the stringent upper bounds on the DM direct detection rates. This is especially so when its mass is around or below 100 GeV for which such
Multi-component dark matter scenarios are studied in the model with $U(1)_X$ dark gauge symmetry that is broken into its product subgroup $Z_2 times Z_3$ {a} la Krauss-Wilczek mechanism. In this setup, there exist two types of dark matter fields, $X$