ترغب بنشر مسار تعليمي؟ اضغط هنا

Sign problem in $Z_3$-symmetric effective Polyakov-line model

150   0   0.0 ( 0 )
 نشر من قبل Takehiro Hirakida
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

As an effective model corresponding to $Z_3$-symmetric QCD ($Z_3$-QCD), we construct a $Z_3$-symmetric effective Polyakov-line model ($Z_3$-EPLM) by using the logarithmic fermion effective action. Since $Z_3$-QCD tends to QCD in the zero temperature limit, $Z_3$-EPLM also agrees with the ordinary effective Polyakov-line model (EPLM) there; note that ordinary EPLM does not possess $Z_3$ symmetry. Our main purpose is to discuss a sign problem appearing in $Z_3$-EPLM. The action of $Z_3$-EPLM is real, when the Polyakov line is not only real but also its $Z_3$ images. This suggests that the sign problem becomes milder in $Z_3$-EPLM than in EPLM. In order to confirm this suggestion, we do lattice simulations for both EPLM and $Z_3$-EPLM by using the reweighting method with the phase quenched approximation. In the low-temperature region, the sign problem is milder in $Z_3$-EPLM than in EPLM. We also propose a new reweighting method. This makes the sign problem very weak in $Z_3$-EPLM.



قيم البحث

اقرأ أيضاً

We construct four kinds of Z3-symmetric three-dimentional (3-d) Potts models, each with different number of states at each site on a 3-d lattice, by extending the 3-d three-state Potts model. Comparing the ordinary Potts model with the four Z3-symmet ric Potts models, we investigate how Z3 symmetry affects the sign problem and see how the deconfinement transition line changes in the $mu-kappa$ plane as the number of states increases, where $mu$ $(kappa)$ plays a role of chemical potential (temperature) in the models. We find that the sign problem is almost cured by imposing Z3 symmetry. This mechanism may happen in Z3-symmetric QCD-like theory. We also show that the deconfinement transition line has stronger $mu$-dependence with respect to increasing the number of states.
The nonanalyticity and the sign problem in the Z3-symmetric heavy quark model at low temperature are studied phenomenologically. For the free heavy quarks, the nonanalyticity is analyzed in the relation to the zeros of the grand canonical partition f unction. The Z3-symmetric effective Polyakov-line model (EPLM) in strong coupling limit is also considered as an phenomenological model of Z3-symmetric QCD with large quark mass at low temperature. We examine how the Z3-symmetric EPLM approaches to the original one in the zero-temperature limit. The effects of the Z3-symmetry affect the structure of zeros of the microscopic probability density function at the nonanalytic point. The average value of the Polyakov line can detect the structure, while the other thermodynamic quantities are not sensible to the structure in the zero-temperature limit. The effect of the imaginary quark chemical potential is also discussed. The imaginary part of the quark number density is very sensitive to the symmetry structure at the nonanalytical point. For a particular value of the imaginary quark number chemical potential, large quark number may be induced in the vicinity of the nonanalytical point.
The persistent homology analysis is applied to the effective Polyakov-line model on a rectangular lattice to investigate the confinement-deconfinement nature. The lattice data are mapped onto the complex Polyakov-line plane without taking the spatial average and then the plane is divided into three domains. This study is based on previous studies for the clusters and the percolation properties in lattice QCD, but the mathematical method of the analyses are different. The spatial distribution of the data in the individual domain is analyzed by using the persistent homology to obtain information of the multiscale structure of center clusters. In the confined phase, the data in the three domains show the same topological tendency characterized by the birth and death times of the holes which are estimated via the filtration of the alpha complexes in the data space, but do not in the deconfined phase. By considering the configuration averaged ratio of the birth and death times of holes, we can construct the nonlocal order-parameter of the confinement-deconfinement transition from the multiscale topological properties of center clusters.
We apply the path optimization method to a QCD effective model with the Polyakov loop at finite density to circumvent the model sign problem. The Polyakov-loop extended Nambu--Jona-Lasinio model is employed as the typical QCD effective model and then the hybrid Monte-Carlo method is used to perform the path integration. To control the sign problem, the path optimization method is used with complexification of temporal gluon fields to modify the integral path in the complex space. We show that the average phase factor is well improved on the modified integral-path compared with that on the original one. This indicates that the complexification of temporal gluon fields may be enough to control the sign problem of QCD in the path optimization method.
Three-quark potentials are studied in great details in the three-dimensional $SU(3)$ pure gauge theory at finite temperature, for the cases of static sources in the fundamental and adjoint representations. For this purpose, the corresponding Polyakov loop model in its simplest version is adopted. The potentials in question, as well as the conventional quark--anti-quark potentials, are calculated numerically both in the confinement and deconfinement phases. Results are compared to available analytical predictions at strong coupling and in the limit of large number of colors $N$. The three-quark potential is tested against the expected $Delta$ and $Y$ laws and the $3q$ string tension entering these laws is compared to the conventional $qbar{q}$ string tension. As a byproduct of this investigation, essential features of the critical behaviour across the deconfinement transition are elucidated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا