ﻻ يوجد ملخص باللغة العربية
Inspired by the fact that relatively small values of the effective higgsino mass parameter of the $Z_3$-symmetric Next-to-Minimal Supersymmetric Standard Model (NMSSM) could render the scenario `natural, we explore the plausibility of having relatively light neutralinos and charginos (the electroweakinos or the ewinos) in such a scenario with a rather light singlino-like Lightest Supersymmetric Particle (LSP), which is a Dark Matter (DM) candidate, and singlet-dominated scalar excitations. By first confirming the indications in the existing literature that finding simultaneous compliance with results from the Large Hadron Collider (LHC) and those from various DM experiments with such light states is, in general, a difficult ask, we proceed to demonstrate, with the help of a few representative benchmark points, how exactly and to what extent could such a highly motivated `natural setup with a singlino-like DM candidate still remains plausible.
Singlino-dominated dark matter properties are investigated in the $Z_3$ Next-to-Minimal Supersymmetric Standard Model, producing superweak interactions with nucleons involved in dark matter direct detection experiments. Approximate analytical formula
A highly bino-like Dark Matter (DM), which is the Lightest Supersymmetric Particle (LSP), could be motivated by the stringent upper bounds on the DM direct detection rates. This is especially so when its mass is around or below 100 GeV for which such
We suggest an NMSSM scenario, motivated by dark matter constraints, that may disguise itself as a much simpler mSUGRA scenario at the LHC. We show how its non-minimal nature can be revealed, and the bino--singlino mass difference measured, by looking for soft leptons.
The general Next-to-Minimal Supersymmetric Standard Model (NMSSM) describes the singlino-dominated dark-matter (DM) property by four independent parameters: singlet-doublet Higgs coupling coefficient $lambda$, Higgsino mass $mu_{tot}$, DM mass $m_{ti
A light singlino is a promising candidate for dark matter, and a light higgsino is natural in the parameter space of the NMSSM. We study the combined constraints on this scenario resulting from the dark matter relic density, the most recent results f