ﻻ يوجد ملخص باللغة العربية
Since their inception in the 30s by von Neumann, operator algebras have been used in shedding light in many mathematical theories. Classification results for self-adjoint and non-self-adjoint operator algebras manifest this approach, but a clear connection between the two was sought since their emergence in the late 60s. We connect these seemingly separate type of results by uncovering a hierarchy of classification for non-self-adjoint operator algebras and $C^*$-algebras with additional $C^*$-algebraic structure. Our approach naturally applies to algebras arising from $C^*$-correspondences to resolve self-adjoint and non-self-adjoint isomorphism problems in the literature. We apply our strategy to completely elucidate this newly found hierarchy for operator algebras arising from directed graphs.
We construct a functor that maps $C^*$-correspondences to their Cuntz-Pimsner algebras. The objects in our domain category are $C^*$-correspondences, and the morphisms are the isomorphism classes of $C^*$-correspondences satisfying certain conditions
This paper is an expanded version of the lectures I delivered at the Indian Statistical Institute, Bangalore, during the OTOA 2014 conference.
We give necessary and sufficient conditions for nuclearity of Cuntz-Nica-Pimsner algebras for a variety of quasi-lattice ordered groups. First we deal with the free abelian lattice case. We use this as a stepping stone to tackle product systems over
We study the equilibrium simplex of Nica-Pimsner algebras arising from product systems of finite rank on the free abelian semigroup. First we show that every equilibrium state has a convex decomposition into parts parametrized by ideals on the unit h
We establish exact sequences in $KK$-theory for graded relative Cuntz-Pimsner algebras associated to nondegenerate $C^*$-correspondences. We use this to calculate the graded $K$-theory and $K$-homology of relative Cuntz-Krieger algebras of directed g