Let $A$ be a unital operator algebra and let $alpha$ be an automorphism of $A$ that extends to a *-automorphism of its $ca$-envelope $cenv (A)$. In this paper we introduce the isometric semicrossed product $A times_{alpha}^{is} bbZ^+ $ and we show th
at $cenv(A times_{alpha}^{is} bbZ^+) simeq cenv (A) times_{alpha} bbZ$. In contrast, the $ca$-envelope of the familiar contractive semicrossed product $A times_{alpha} bbZ^+ $ may not equal $cenv (A) times_{alpha} bbZ$. Our main tool for calculating $ca$-envelopes for semicrossed products is the concept of a relative semicrossed product of an operator algebra, which we explore in the more general context of injective endomorphisms. As an application, we extend a recent result of Davidson and Katsoulis to tensor algebras of $ca$-correspondences. We show that if $T_{X}^{+}$ is the tensor algebra of a $ca$-correspondence $(X, fA)$ and $alpha$ a completely isometric automorphism of $T_{X}^{+}$ that fixes the diagonal elementwise, then the contractive semicrossed product satisfies $ cenv(T_{X}^{+} times_{alpha} bbZ^+)simeq O_{X} times_{alpha} bbZ$, where $O_{X}$ denotes the Cuntz-Pimsner algebra of $(X, fA)$.
A cosystem consists of a possibly nonselfadoint operator algebra equipped with a coaction by a discrete group. We introduce the concept of C*-envelope for a cosystem; roughly speaking, this is the smallest C*-algebraic cosystem that contains an equiv
ariant completely isometric copy of the original one. We show that the C*-envelope for a cosystem always exists and we explain how it relates to the usual C*-envelope. We then show that for compactly aligned product systems over group-embeddable right LCM semigroups, the C*-envelope is co-universal, in the sense of Carlsen, Larsen, Sims and Vittadello, for the Fock tensor algebra equipped with its natural coaction. This yields the existence of a co-universal C*-algebra, generalizing previous results of Carlsen, Larsen, Sims and Vittadello, and of Dor-On and Katsoulis. We also realize the C*-envelope of the tensor algebra as the reduced cross sectional algebra of a Fell bundle introduced by Sehnem, which, under a mild assumption of normality, we then identify to the quotient of the Fock algebra by the image of Sehnems strong covariance ideal. In another application, we obtain a reduced Hao-Ng isomorphism theorem for the co-universal algebras.
Let $(G, P)$ be an abelian, lattice ordered group and let $X$ be a compactly aligned product system over $P$. We show that the C*-envelope of the Nica tensor algebra $mathcal{N}mathcal{T}^+_X$ coincides with both Sehnems covariance algebra $mathcal{A
} times_X P$ and the co-universal C*-algebra $mathcal{N}mathcal{O}^r_X$ for injective, gauge compatible, Nica-covariant representations of Carlsen, Larsen, Sims and Vittadello. We give several applications of this result on both the selfadjoint and non-selfadjoint operator algebra theory. First we guarantee the existence of $mathcal{N}mathcal{O}^r_X$, thus settling a problem of Carlsen, Larsen, Sims and Vittadello which was open even for abelian, lattice ordered groups. As a second application, we resolve a problem posed by Skalski and Zacharias on dilating isometric representations of product systems to unitary representations. As a third application we characterize the C*-envelope of the tensor algebra of a finitely aligned higher-rank graph which also holds for topological higher-rank graphs. As a final application we prove reduced Hao-Ng isomorphisms for generalized gauge actions of discrete groups on C*-algebras of product systems. This generalizes recent results that were obtained by various authors in the case where $(G, P) =(mathbb{Z},mathbb{N})$.
Since their inception in the 30s by von Neumann, operator algebras have been used in shedding light in many mathematical theories. Classification results for self-adjoint and non-self-adjoint operator algebras manifest this approach, but a clear conn
ection between the two was sought since their emergence in the late 60s. We connect these seemingly separate type of results by uncovering a hierarchy of classification for non-self-adjoint operator algebras and $C^*$-algebras with additional $C^*$-algebraic structure. Our approach naturally applies to algebras arising from $C^*$-correspondences to resolve self-adjoint and non-self-adjoint isomorphism problems in the literature. We apply our strategy to completely elucidate this newly found hierarchy for operator algebras arising from directed graphs.
In this paper we study the C*-envelope of the (non-self-adjoint) tensor algebra associated via subproduct systems to a finite irreducible stochastic matrix $P$. Firstly, we identify the boundary representations of the tensor algebra inside the Toepli
tz algebra, also known as its non-commutative Choquet boundary. As an application, we provide examples of C*-envelopes that are not *-isomorphic to either the Toeplitz algebra or the Cuntz-Pimsner algebra. This characterization required a new proof for the fact that the Cuntz-Pimsner algebra associated to $P$ is isomorphic to $C(mathbb{T}, M_d(mathbb{C}))$, filling a gap in a previous paper. We then proceed to classify the C*-envelopes of tensor algebras of stochastic matrices up to *-isomorphism and stable isomorphism, in terms of the underlying matrices. This is accomplished by determining the K-theory of these C*-algebras and by combining this information with results due to Paschke and Salinas in extension theory. This classification is applied to provide a clearer picture of the various C*-envelopes that can land between the Toeplitz and the Cuntz-Pimsner algebras.