ﻻ يوجد ملخص باللغة العربية
We give necessary and sufficient conditions for nuclearity of Cuntz-Nica-Pimsner algebras for a variety of quasi-lattice ordered groups. First we deal with the free abelian lattice case. We use this as a stepping stone to tackle product systems over quasi-lattices that are controlled by the free abelian lattice and satisfy a minimality property. Our setting accommodates examples like the Baumslag-Solitar lattice for $n=m>0$ and the right-angled Artin groups. More generally the class of quasi-lattices for which our results apply is closed under taking semi-direct and graph products. In the process we accomplish more. Our arguments tackle Nica-Pimsner algebras that admit a faithful conditional expectation on a small fixed point algebra and a faithful copy of the co-efficient algebra. This is the case for CNP-relative quotients in-between the Toeplitz-Nica-Pimsner algebra and the Cuntz-Nica-Pimsner algebra. We complete this study with the relevant results on exactness.
We study the equilibrium simplex of Nica-Pimsner algebras arising from product systems of finite rank on the free abelian semigroup. First we show that every equilibrium state has a convex decomposition into parts parametrized by ideals on the unit h
The residual finite-dimensionality of a $mathrm{C}^*$-algebra is known to be encoded in a topological property of its space of representations, stating that finite-dimensional representations should be dense therein. We extend this paradigm to genera
We introduce the notion of a homotopy of product systems, and show that the Cuntz-Nica-Pimsner algebras of homotopic product systems over N^k have isomorphic K-theory. As an application, we give a new proof that the K-theory of a 2-graph C*-algebra i
We consider Pimsner algebras that arise from C*-correspondences of finite rank, as dynamical systems with their rotational action. We revisit the Laca-Neshveyev classification of their equilibrium states at positive inverse temperature along with the
In this paper we study weight