ﻻ يوجد ملخص باللغة العربية
The mechanism that restores the pseudo-spin symmetry (PSS) are investigated under the relativistic Hartree-Fock (RHF) approach, by focusing on the in-medium balance between nuclear attractive and repulsive interactions. It is illustrated that the modelings of both the equilibrium of nuclear dynamics and the in-medium effects can be essentially changed by the $rho$-tensor coupling that play the role almost fully via the Fock terms, from which the model discrepancy on the PSS restoration is verified. Specifically, the largely different density-dependent behaviors of the isoscalar coupling strengths $g_sigma$ and $g_omega$, deduced from the parametrization of the RHF Lagrangian PKA1, play an essential role in restoring the PSS of the high-$l$ pseudo-spin doublets around the Fermi levels. Qualitatively, a guidance is provided for the modelings of both the equilibrium of nuclear dynamics and the in-medium effects via the PSS restoration.
Oscillations of mainly surface character (S=0 modes) give rise, in atomic nuclei, to an attractive (induced) pairing interaction, while spin (S=1) modes of mainly volume character generate a repulsive interaction, the net effect being an attraction w
We shed light upon the eta mass in nuclear matter in the context of partial restoration of chiral symmetry, pointing out that the U_{A}(1) anomaly effects causes the eta-eta mass difference necessarily through the chiral symmetry breaking. As a conse
The partial restoration of chiral symmetry in nuclear medium is investigated in a model independent way by exploiting operator relations in QCD. An exact sum rule is derived for the quark condensate valid for all density. This sum rule is simplified
In-medium modification of the eta mass is discussed in the context of partial restoration of chiral symmetry in nuclear medium. We emphasize that the U_A(1) anomaly effects causes the eta-eta mass difference necessarily through the chiral symmetry br
Restoration of pseudo-spin symmetry (PSS) along the $N=32$ and $34$ isotonic chains and the physics behind are studied by applying the relativistic Hartree-Fock theory with effective Lagrangian PKA1. Taking the proton pseudo-spin partners $(pi2s_{1/2