ﻻ يوجد ملخص باللغة العربية
In-medium modification of the eta mass is discussed in the context of partial restoration of chiral symmetry in nuclear medium. We emphasize that the U_A(1) anomaly effects causes the eta-eta mass difference necessarily through the chiral symmetry breaking. As a consequence, the eta mass is expected to be reduced by order of 100 MeV in nuclear matter where about 30% reduction of chiral symmetry takes place. The strong attraction relating to the eta mass generation eventually implies that there should be also a strong attractive interaction in the scalar channel of the eta-N two-body system. We find that the attraction can be strong enough to form a bound state.
We shed light upon the eta mass in nuclear matter in the context of partial restoration of chiral symmetry, pointing out that the U_{A}(1) anomaly effects causes the eta-eta mass difference necessarily through the chiral symmetry breaking. As a conse
The partial restoration of chiral symmetry in nuclear medium is investigated in a model independent way by exploiting operator relations in QCD. An exact sum rule is derived for the quark condensate valid for all density. This sum rule is simplified
Exploiting operator relations in QCD, we derive a novel and model-independent formula relating the in-medium quark condensate <bar-q q>* to the decay constant F*_t and the wave function renormalization constant Z* of the pion in the nuclear medium. E
We calculate the mass of the vector meson in the chiral symmetry restored vacuum. This is accomplished by separating the four quark operators appearing in the vector and axial vector meson sum rules into chiral symmetric and symmetry breaking parts d
We discuss the effect of changes in meson properties in a nuclear medium on physical observables, notably, $J/Psi$ dissociation on pion and $rho$ meson comovers in relativistic heavy ion collisions, and the prediction of the $omega$-, $eta$- and $eta$-nuclear bound states.