ﻻ يوجد ملخص باللغة العربية
Oscillations of mainly surface character (S=0 modes) give rise, in atomic nuclei, to an attractive (induced) pairing interaction, while spin (S=1) modes of mainly volume character generate a repulsive interaction, the net effect being an attraction which accounts for a sizeable fraction of the experimental pairing gap. Suppressing the particle-vibration coupling mediated by the proton degrees of freedom, i.e., mimicking neutron matter, the total surface plus spin-induced pairing interaction becomes repulsive.
The mechanism that restores the pseudo-spin symmetry (PSS) are investigated under the relativistic Hartree-Fock (RHF) approach, by focusing on the in-medium balance between nuclear attractive and repulsive interactions. It is illustrated that the mod
The role of the meson-exchange current correction to the nuclear charge operator is studied in electron scattering processes involving the excitation of medium and heavy nuclei to energies up to the quasi-elastic peak. The effect of these contributio
We demonstrate, within symmetry unrestricted time-dependent density functional theory, the existence of new effects in low-energy nuclear reactions which originate from superfluidity. The dynamics of the pairing field induces solitonic excitations in
We derive upper and lower bounds on the Casimir--Polder force between an anisotropic dipolar body and a macroscopic body separated by vacuum via algebraic properties of Maxwells equations. These bounds require only a coarse characterization of the sy
Starting from general expressions of well-chosen symmetric nuclear matter quantities derived for both zero- and finite-range effective theories, we derive the contributions to the effective mass. We first show that, independently of the range, the tw