ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum approach to the dynamical systems modeling

184   0   0.0 ( 0 )
 نشر من قبل Yurii Ivanovich Bogdanov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a general approach to the classical dynamical systems simulation. This approach is based on classical systems extension to quantum states. The proposed theory can be applied to analysis of multiple (including non-Hamiltonian) dissipative dynamical systems. As examples, we consider the logistic model, the Van der Pol oscillator, dynamical systems of Lorenz, Rossler (including Rossler hyperchaos) and Rabinovich-Fabrikant. Developed methods and algorithms integrated in quantum simulators will allow us to solve a wide range of problems with scientific and practical significance.



قيم البحث

اقرأ أيضاً

We discuss a modification to Random Matrix Theory eigenstate statistics, that systematically takes into account the non-universal short-time behavior of chaotic systems. The method avoids diagonalization of the Hamiltonian, instead requiring only a k nowledge of short-time dynamics for a chaotic system or ensemble of similar systems. Standard Random Matrix Theory and semiclassical predictions are recovered in the limits of zero Ehrenfest time and infinite Heisenberg time, respectively. As examples, we discuss wave function autocorrelations and cross-correlations, and show that significant improvement in accuracy is obtained for simple chaotic systems where comparison can be made with brute-force diagonalization. The accuracy of the method persists even when the short-time dynamics of the system or ensemble is known only in a classical approximation. Further improvement in the rate of convergence is obtained when the method is combined with the correlation function bootstrapping approach introduced previously.
A prepotential approach to constructing the quantum systems with dynamical symmetry is proposed. As applications, we derive generalizations of the hydrogen atom and harmonic oscillator, which can be regarded as the systems with position-dependent mas s. They have the symmetries which are similar to the corresponding ones, and can be solved by using the algebraic method.
We develop a dynamical symmetry approach to path integrals for general interacting quantum spin systems. The time-ordered exponential obtained after the Hubbard-Stratonovich transformation can be disentangled into the product of a finite number of th e usual exponentials. This procedure leads to a set of stochastic differential equations on the group manifold, which can be further formulated in terms of the supersymmetric effective action. This action has the form of the Witten topological field theory in the continuum limit. As a consequence, we show how it can be used to obtain the exact results for a specific quantum many-body system which can be otherwise solved only by the Bethe ansatz. To our knowledge this represents the first example of a many-body system treated exactly using the path integral formulation. Moreover, our method can deal with time-dependent parameters, which we demonstrate explicitly.
130 - Ru-Hai Du , Shi-Xian Qu , 2018
We uncover a route from low-dimensional to high-dimensional chaos in nonsmooth dynamical systems as a bifurcation parameter is continuously varied. The striking feature is the existence of a finite parameter interval of periodic attractors in between the regimes of low- and high-dimensional chaos. That is, the emergence of high-dimensional chaos is preceded by the systems settling into a totally nonchaotic regime. This is characteristically distinct from the situation in smooth dynamical systems where high-dimensional chaos emerges directly and smoothly from low-dimensional chaos. We carry out an analysis to elucidate the underlying mechanism for the abrupt emergence and disappearance of the periodic attractors and provide strong numerical support for the typicality of the transition route in the pertinent two-dimensional parameter space. The finding has implications to applications where high-dimensional and robust chaos is desired.
We derive a quantum master equation to treat quantum systems interacting with multiple reservoirs. The formalism is used to investigate atomic transport across a variety of lattice configurations. We demonstrate how the behavior of an electronic diod e, a field-effect transistor, and a bipolar junction transistor can be realized with neutral, ultracold atoms trapped in optical lattices. An analysis of the current fluctuations is provided for the case of the atomtronic diode. Finally, we show that it is possible to demonstrate AND logic gate behavior in an optical lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا