ﻻ يوجد ملخص باللغة العربية
We discuss a modification to Random Matrix Theory eigenstate statistics, that systematically takes into account the non-universal short-time behavior of chaotic systems. The method avoids diagonalization of the Hamiltonian, instead requiring only a knowledge of short-time dynamics for a chaotic system or ensemble of similar systems. Standard Random Matrix Theory and semiclassical predictions are recovered in the limits of zero Ehrenfest time and infinite Heisenberg time, respectively. As examples, we discuss wave function autocorrelations and cross-correlations, and show that significant improvement in accuracy is obtained for simple chaotic systems where comparison can be made with brute-force diagonalization. The accuracy of the method persists even when the short-time dynamics of the system or ensemble is known only in a classical approximation. Further improvement in the rate of convergence is obtained when the method is combined with the correlation function bootstrapping approach introduced previously.
Consider a chaotic dynamical system generating Brownian motion-like diffusion. Consider a second, non-chaotic system in which all particles localize. Let a particle experience a random combination of both systems by sampling between them in time. Wha
Parameter-dependent statistical properties of spectra of totally connected irregular quantum graphs with Neumann boundary conditions are studied. The autocorrelation functions of level velocities c(x) and c(w,x) as well as the distributions of level
A new method of virtual unknown parameter is proposed to synchronize two different systems with unknown parameters and disturbance in finite time. Virtual unknown parameters are introduced in order to avoid the unknown parameters from appearing in th
We present a general approach to the classical dynamical systems simulation. This approach is based on classical systems extension to quantum states. The proposed theory can be applied to analysis of multiple (including non-Hamiltonian) dissipative d
We continue our study of chaotic mixing and transport of passive particles in a simple model of a meandering jet flow [Prants, et al, Chaos {bf 16}, 033117 (2006)]. In the present paper we study and explain phenomenologically a connection between dyn