ﻻ يوجد ملخص باللغة العربية
We derive a quantum master equation to treat quantum systems interacting with multiple reservoirs. The formalism is used to investigate atomic transport across a variety of lattice configurations. We demonstrate how the behavior of an electronic diode, a field-effect transistor, and a bipolar junction transistor can be realized with neutral, ultracold atoms trapped in optical lattices. An analysis of the current fluctuations is provided for the case of the atomtronic diode. Finally, we show that it is possible to demonstrate AND logic gate behavior in an optical lattice.
Perturbation theory (PT) is a powerful and commonly used tool in the investigation of closed quantum systems. In the context of open quantum systems, PT based on the Markovian quantum master equation is much less developed. The investigation of open
Atomtronics is an emerging field in quantum technology that promises to realize atomic circuit architectures exploiting ultra-cold atoms manipulated in versatile micro-optical circuits generated by laser fields of different shapes and intensities or
For a Markovian open quantum system it is possible, by continuously monitoring the environment, to know the stochastically evolving pure state of the system without altering the master equation. In general, even for a system with a finite Hilbert spa
The underlying probabilistic theory for quantum mechanics is non-Kolmogorovian. The order in which physical observables will be important if they are incompatible (non-commuting). In particular, the notion of conditioning needs to be handled with car
By using the effective Hamiltonian approach, we present a self-consistent framework for the analysis of geometric phases and dynamically stable decoherence-free subspaces in open systems. Comparisons to the earlier works are made. This effective Hami