ﻻ يوجد ملخص باللغة العربية
We study both experimentally and theoretically, considering bosonic atoms in a periodic potential, the influence of interactions in a Talbot interferometer. While interactions decrease the contrast of the revivals, we find that over a wide range of interactions the Talbot signal is still proportional to the phase coherence of the matter wave field. Our results confirm that Talbot interferometry can be a useful tool to study finite range phase correlations in an optical lattice even in the presence of interactions. The relative robustness of the Talbot signal is supported by the first demonstration of the three-dimensional Talbot effect.
We demonstrate, experimentally and theoretically, a Talbot effect for hybrid light-matter waves -- exciton-polariton condensate formed in a semiconductor microcavity with embedded quantum wells. The characteristic Talbot carpet is produced by loading
Understanding the effect of interactions in the phase evolution of expanding atomic Bose Einstein condensates is fundamental to describe the basic phenomenon of matter wave interference. Many theoretical and experimental works tackled this problem, a
A freely propagating optical field having a periodic transverse spatial profile undergoes periodic axial revivals - a well-known phenomenon known as the Talbot effect or self-imaging. We show here that introducing tight spatio-temporal spectral corre
We explore the influence of contact interactions on a synthetically spin-orbit coupled system of two ultracold trapped atoms. Even though the system we consider is bosonic, we show that a regime exists in which the competition between the contact and
Closed generic quantum many-body systems may fail to thermalize under certain conditions even after long times, a phenomenon called many-body localization (MBL). Numerous studies support the stability of the MBL phase in strongly disordered one-dimen