ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of interactions in the interference pattern of Bose Einstein condensates

502   0   0.0 ( 0 )
 نشر من قبل Francesco Minardi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the effect of interactions in the phase evolution of expanding atomic Bose Einstein condensates is fundamental to describe the basic phenomenon of matter wave interference. Many theoretical and experimental works tackled this problem, always with the implicit assumption that the mutual interaction between two expanding condensates rigidly modifies the phase evolution through an effective force. In this paper, we present a combined experimental and theoretical investigation of the interference profile of expanding $^{87}$Rb condensates, with a specific focus on the effect of interactions. We come to the different conclusion that the mutual interaction produces local modifications of the condensate phase only in the region where the wavepackets overlap.



قيم البحث

اقرأ أيضاً

Interference of an array of independent Bose-Einstein condensates, whose experiment has been performed recently, is theoretically studied in detail. Even if the number of the atoms in each gas is kept finite and the phases of the gases are not well d efined, interference fringes are observed on each snapshot. The statistics of the snapshot interference patterns, i.e., the average fringe amplitudes and their fluctuations (covariance), are computed analytically, and concise formulas for their asymptotic values for long time of flight are derived. Processes contributing to these quantities are clarified and the relationship with the description on the basis of the symmetry-breaking scenario is revealed.
We investigate the effects of vortex interaction on the formation of interference patterns in a coherent pair of two-dimensional Bose condensed clouds of ultra-cold atoms traveling in opposite directions subject to a harmonic trapping potential. We i dentify linear and nonlinear regimes in the dipole oscillations of the condensates according to the balance of internal and centre-of-mass energies of the clouds. Simulations of the collision of two clouds each containing a vortex with different winding number (charge) were carried out in these regimes in order to investigate the creation of varying interference patterns. The interaction between different vortex type can be clearly distinguished by those patterns.
154 - S. Choi , B. Sundaram 2009
An atomic Bose-Einstein condensate (BEC) is often described as a macroscopic object which can be approximated by a coherent state. This, on the surface, would appear to indicate that its behavior should be close to being classical. In this paper, we clarify the extent of how classical a BEC is by exploring the semiclassical equations for BECs under the mean field Gaussian approximation. Such equations describe the dynamics of a condensate in the classical limit in terms of the variables < x > and < p > as well as their respective variances. We compare the semiclassical solution with the full quantum solution based on the Gross-Pitaevskii Equation (GPE) and find that the interatomic interactions which generate nonlinearity make the system less classical. On the other hand, many qualitative features are captured by the semiclassical equations, and the equations to be solved are far less computationally intensive than solving the GPE which make them ideal for providing quick diagnostics, and for obtaining new intuitive insight.
We investigate experimentally the effects of light assisted collisions on the coherence between momentum states in Bose-Einstein condensates. The onset of superradiant Rayleigh scattering serves as a sensitive monitor for matter wave coherence. A sub tle interplay of binary and collective effects leads to a profound asymmetry between the two sides of the atomic resonance and provides far bigger coherence loss rates for a condensate bathed in blue detuned light than previously estimated. We present a simplified quantitative model containing the essential physics to explain our experimental data and point at a new experimental route to study strongly coupled light matter systems.
We have observed interference between two Bose-Einstein condensates of weakly bound Feshbach molecules of fermionic $^6$Li atoms. Two condensates are prepared in a double-well trap and, after release from this trap, overlap in expansion. We detect a clear interference pattern that unambiguously demonstrates the de Broglie wavelength of molecules. We verify that only the condensate fraction shows interference. For increasing interaction strength, the pattern vanishes because elastic collisions during overlap remove particles from the condensate wave function. For strong interaction the condensates do not penetrate each other as they collide hydrodynamically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا