ﻻ يوجد ملخص باللغة العربية
We demonstrate, experimentally and theoretically, a Talbot effect for hybrid light-matter waves -- exciton-polariton condensate formed in a semiconductor microcavity with embedded quantum wells. The characteristic Talbot carpet is produced by loading the exciton-polariton condensate into a microstructured one dimensional periodic array of mesa traps, which creates an array of sources for coherent polariton flow in the plane of the quantum wells. The spatial distribution of the Talbot fringes outside the mesas mimics the near-field diffraction of a monochromatic wave on a periodic amplitude and phase grating with the grating period comparable to the wavelength. Despite the lossy nature of the polariton system, the Talbot pattern persists for distances exceeding the size of the mesas by an order of magnitude.
We present experimental observations of a non-resonant dynamic Stark shift in strongly coupled microcavity quantum well exciton-polaritons - a system which provides a rich variety of solid-state collective phenomena. The Stark effect is demonstrated
Microcavity exciton-polaritons, known to exhibit non-equilibrium Bose condensation at high critical temperatures, can be also brought in thermal equilibrium with the surrounding medium and form a quantum degenerate Bose-Einstein distribution. It happ
Bose-Einstein condensate of exciton polaritons in a semiconductor microcavity is a macroscopically populated coherent quantum state subject to concurrent pumping and decay. Debates about the fundamental nature of the condensed phase in this open quan
Strong light matter coupling between excitons and microcavity photons, as described in the framework of cavity quantum electrodynamics, leads to the hybridization of light and matter excitations. The regime of collective strong coupling arises, when
We study both experimentally and theoretically, considering bosonic atoms in a periodic potential, the influence of interactions in a Talbot interferometer. While interactions decrease the contrast of the revivals, we find that over a wide range of i