ترغب بنشر مسار تعليمي؟ اضغط هنا

Directly diode-pumped, Kerr-lens mode-locked, few-cycle Cr:ZnSe oscillator

218   0   0.0 ( 0 )
 نشر من قبل Nathalie Nagl
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Nathalie Nagl




اسأل ChatGPT حول البحث

Lasers based on Cr$^{2+}$-doped II-VI material, often known as the Ti:Sapphire of the mid-infrared, can directly provide few-cycle pulses with super-octave-spanning spectra, and serve as efficient drivers for generating broadband mid-infrared radiation. It is expected that the wider adoption of this technology benefits from more compact and cost-effective embodiments. Here, we report the first directly diode-pumped, Kerr-lens mode-locked Cr$^{2+}$-doped II-VI oscillator pumped by a single InP diode, providing average powers of over 500 mW and pulse durations of 45 fs - shorter than six optical cycles at 2.4 $mu$m. These correspond to a sixty-fold increase in peak power compared to the previous diode-pumped record, and are at similar levels with respect to more mature fiber-pumped oscillators. The diode-pumped femtosecond oscillator presented here constitutes a key step towards a more accessible alternative to synchrotron-like infrared radiation, and is expected to accelerate research in laser spectroscopy and ultrafast infrared optics.



قيم البحث

اقرأ أيضاً

Continuous-wave mode-locked femtosecond 2 um solid-state laser with a c-cut Tm:CaYAlO4 as gain medium was experimentally demonstrated. The mode locked laser generated stable pulses with average output power as high as 531 mW, pulse duration of 496 fs , and repetition rate of 97 MHz at 1975 nm. The research results show that Tm:CaYAlO4 is an excellent gain medium for femtosecond pulse generation at 2um wavelength.
The theoretical calculation for nonlinear refractive index in Cr: ZnSe - active medium predicts the strong defocusing cascaded second-order nonlinearity within 2000 - 3000 nm spectral range. On the basis of this result the optimal cavity configuratio n for Kerr-lens mode locking is proposed that allows to achieve a sub-100 fs pulse duration. The numerical simulations testify about strong destabilizing processes in the laser resulting from a strong self-phase modulation. The stabilization of the ultrashort pulse generation is possible due to spectral filtering that increases the pulse duration up to 300 fs.
While the performance of mode-locked fiber lasers has been improved significantly, the limited gain bandwidth restricts them to generate ultrashort pulses approaching a few cycles or even shorter. Here we present a novel method to achieve few cycle p ulses (~5 cycles) with ultra-broad spectrum (~400 nm). To our best knowledge, this is the shortest pulse width and broadest spectrum directly generated from fiber lasers. It is noteworthy that a dramatic ultrashort pulse evolution can be stabilized in a laser oscillator by the unique nonlinear processes of a self-similar evolution as a nonlinear attractor in the gain fiber and a perfect saturable absorber action of the Mamyshev oscillator.
Stable 30 fs pulses centered at 1068 nm (less than 10 optical cycles) are demonstrated in a diode pumped Yb:CaYAlO4 laser by using high-quality chemical vapor deposited monolayer graphene as the saturable absorber. The mode locked 8.43 optical-cycle pulses have a spectral bandwidth of ~ 50 nm and a pulse repetition frequency of ~ 113.5 MHz. To our knowledge, this is the shortest pulse ever reported for graphene mode-locked lasers and mode-locked Yb-doped bulk lasers. Our experimental results demonstrate that graphene mode locking is a very promising practical technique to generate few-cycle optical pulses directly from a laser oscillator.
In this letter, we investigate a Yb-doped mode-locked fiber oscillator that uses coherent pulse division and recombination to avoid excessive nonlinear phase shifts. The mode-locking mechanism of the laser is based on the accumulation of a differenti al nonlinear phase between orthogonal polarization modes in the polarization-maintaining fiber segment. The inserted coherent pulse divider, based on YVO4-crystals rotated successively by 45{deg}, enables stable and undistorted mode-locked steady-states. The output pulse energy is increased from 89 pJ in the non-divided operation by ~6.5 dB to more than 400 pJ with three divisions. Measurements of the amplitude-fluctuations reveal a simultaneous broadband reduction of up to ~9 dB in the frequency range from 10 kHz to 2MHz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا