ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of the Kerr-lens Mode Locking Ability of Cr:ZnSe Solid-State Laser

70   0   0.0 ( 0 )
 نشر من قبل Kalashnikov
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The theoretical calculation for nonlinear refractive index in Cr: ZnSe - active medium predicts the strong defocusing cascaded second-order nonlinearity within 2000 - 3000 nm spectral range. On the basis of this result the optimal cavity configuration for Kerr-lens mode locking is proposed that allows to achieve a sub-100 fs pulse duration. The numerical simulations testify about strong destabilizing processes in the laser resulting from a strong self-phase modulation. The stabilization of the ultrashort pulse generation is possible due to spectral filtering that increases the pulse duration up to 300 fs.



قيم البحث

اقرأ أيضاً

217 - Nathalie Nagl 2019
Lasers based on Cr$^{2+}$-doped II-VI material, often known as the Ti:Sapphire of the mid-infrared, can directly provide few-cycle pulses with super-octave-spanning spectra, and serve as efficient drivers for generating broadband mid-infrared radiati on. It is expected that the wider adoption of this technology benefits from more compact and cost-effective embodiments. Here, we report the first directly diode-pumped, Kerr-lens mode-locked Cr$^{2+}$-doped II-VI oscillator pumped by a single InP diode, providing average powers of over 500 mW and pulse durations of 45 fs - shorter than six optical cycles at 2.4 $mu$m. These correspond to a sixty-fold increase in peak power compared to the previous diode-pumped record, and are at similar levels with respect to more mature fiber-pumped oscillators. The diode-pumped femtosecond oscillator presented here constitutes a key step towards a more accessible alternative to synchrotron-like infrared radiation, and is expected to accelerate research in laser spectroscopy and ultrafast infrared optics.
Nonstationary pulse regimes associated with self modulation of a Kerr-lens modelocked Ti:sapphire laser have been studied experimentally and theoretically. Such laser regimes occur at an intracavity group delay dispersion that is smaller or larger th an what is required for stable modelocking and exhibit modulation in pulse amplitude and spectra at frequencies of several hundred kHz. Stabilization of such modulations, leading to an increase in the pulse peak power by a factor of ten, were accomplished by weakly modulating the pump laser with the self-modulation frequency. The main experimental observations can be explained with a round trip model of the fs laser taking into account gain saturation, Kerr lensing, and second- and third-order dispersion.
Ultrashort pulses from Kerr-lens mode-locked oscillators have inspired a variety of applications. The design and alignment of these laser resonators have thus far been theoretically supported by the conventional analysis of beam propagation. However, the well-established theoretical framework is sometimes beyond the scope of high-peak-power oscillators. In this paper, we analyze the geometry of ring resonators by extending the ABCD-matrix method to a high-peak-power regime. The guidelines to achieving stable Kerr-lens mode-locking is provided for high-peak-power pulses.
We introduce a mechanism of stable spatiotemporal soliton formation in a multimode fiber laser. This is based on spatially graded dissipation, leading to distributed Kerr-lens mode-locking. Our analysis involves solutions of a generalized dissipative Gross-Pitaevskii equation. This equation has a broad range of applications in nonlinear physics, including nonlinear optics, spatiotemporal patterns formation, plasma dynamics, and Bose-Einstein condensates. We demonstrate that careful control of dissipative and non-dissipative physical mechanisms results in the self-emergence of stable (2+1)-dimensional dissipative solitons. Achieving such a regime does not require the presence of any additional dissipative nonlinearities, such a mode-locker in a laser, or inelastic scattering in a Bose-Einstein condensate. Our method allows for stable energy (or mass) harvesting by coherent localized structures, such as ultrashort laser pulses or Bose-Einstein condensates.
A technique is proposed to generate attosecond pulse trains of radiation from a Free-Electron Laser amplifier. The optics-free technique synthesises a comb of longitudinal modes by applying a series of spatio-temporal shifts between the co-propagatin g radiation and electron bunch in the FEL. The modes may be phase-locked by modulating the electron beam energy at the mode spacing frequency. Three-dimensional simulations demonstrate the generation of a train of 400as pulses at giga-watt power levels evenly spaced by 2.5fs at a wavelength of 124 Angstrom. In the X-ray at wavelength 1.5 Angstrom, trains of 23as pulses evenly spaced by 150as and of peak power up to 6GW are predicted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا