ﻻ يوجد ملخص باللغة العربية
This paper studies the problem of error-runtime trade-off, typically encountered in decentralized training based on stochastic gradient descent (SGD) using a given network. While a denser (sparser) network topology results in faster (slower) error convergence in terms of iterations, it incurs more (less) communication time/delay per iteration. In this paper, we propose MATCHA, an algorithm that can achieve a win-win in this error-runtime trade-off for any arbitrary network topology. The main idea of MATCHA is to parallelize inter-node communication by decomposing the topology into matchings. To preserve fast error convergence speed, it identifies and communicates more frequently over critical links, and saves communication time by using other links less frequently. Experiments on a suite of datasets and deep neural networks validate the theoretical analyses and demonstrate that MATCHA takes up to $5times$ less time than vanilla decentralized SGD to reach the same training loss.
End-to-end AutoML has attracted intensive interests from both academia and industry, which automatically searches for ML pipelines in a space induced by feature engineering, algorithm/model selection, and hyper-parameter tuning. Existing AutoML syste
The scale of deep learning nowadays calls for efficient distributed training algorithms. Decentralized momentum SGD (DmSGD), in which each node averages only with its neighbors, is more communication efficient than vanilla Parallel momentum SGD that
Given a graph $G$, a vertex switch of $v in V(G)$ results in a new graph where neighbors of $v$ become nonneighbors and vice versa. This operation gives rise to an equivalence relation over the set of labeled digraphs on $n$ vertices. The equivalence
The ability to scale distributed optimization to large node counts has been one of the main enablers of recent progress in machine learning. To this end, several techniques have been explored, such as asynchronous, decentralized, or quantized communi
Feature generation is an open topic of investigation in graph machine learning. In this paper, we study the use of graph homomorphism density features as a scalable alternative to homomorphism numbers which retain similar theoretical properties and a