ﻻ يوجد ملخص باللغة العربية
Given a graph $G$, a vertex switch of $v in V(G)$ results in a new graph where neighbors of $v$ become nonneighbors and vice versa. This operation gives rise to an equivalence relation over the set of labeled digraphs on $n$ vertices. The equivalence class of $G$ with respect to the switching operation is commonly referred to as $G$s switching class. The algebraic and combinatorial properties of switching classes have been studied in depth; however, they have not been studied as thoroughly from an algorithmic point of view. The intent of this work is to further investigate the algorithmic properties of switching classes. In particular, we show that switching classes can be used to asymptotically speed up several super-linear unweighted graph algorithms. The current techniques for speeding up graph algorithms are all somewhat involved insofar that they employ sophisticated pre-processing, data-structures, or use word tricks on the RAM model to achieve at most a $O(log(n))$ speed up for sufficiently dense graphs. Our methods are much simpler and can result in super-polylogarithmic speedups. In particular, we achieve better bounds for diameter, transitive closure, bipartite maximum matching, and general maximum matching.
Many algorithms use data structures that maintain properties of matrices undergoing some changes. The applications are wide-ranging and include for example matchings, shortest paths, linear programming, semi-definite programming, convex hull and volu
There are two distinct approaches to speeding up large parallel computers. The older method is the General Purpose Graphics Processing Units (GPGPU). The newer is the Many Integrated Core (MIC) technology . Here we attempt to focus on the MIC technol
We study the application of a counter-diabatic driving (CD) technique to enhance the thermodynamic efficiency and power of a quantum Otto refrigerator based on a superconducting qubit coupled to two resonant circuits. Although the CD technique is ori
This paper studies the problem of error-runtime trade-off, typically encountered in decentralized training based on stochastic gradient descent (SGD) using a given network. While a denser (sparser) network topology results in faster (slower) error co
We show that it is possible to use Bondy-Chvatal closure to design an FPT algorithm that decides whether or not it is possible to cover vertices of an input graph by at most k vertex disjoint paths in the complement of the input graph. More precisely