ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling up graph homomorphism for classification via sampling

86   0   0.0 ( 0 )
 نشر من قبل Paul Beaujean
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Feature generation is an open topic of investigation in graph machine learning. In this paper, we study the use of graph homomorphism density features as a scalable alternative to homomorphism numbers which retain similar theoretical properties and ability to take into account inductive bias. For this, we propose a high-performance implementation of a simple sampling algorithm which computes additive approximations of homomorphism densities. In the context of graph machine learning, we demonstrate in experiments that simple linear models trained on sample homomorphism densities can achieve performance comparable to graph neural networks on standard graph classification datasets. Finally, we show in experiments on synthetic data that this algorithm scales to very large graphs when implemented with Bloom filters.



قيم البحث

اقرأ أيضاً

381 - Hoang NT , Takanori Maehara 2020
In this paper, we study the graph classification problem from the graph homomorphism perspective. We consider the homomorphisms from $F$ to $G$, where $G$ is a graph of interest (e.g. molecules or social networks) and $F$ belongs to some family of gr aphs (e.g. paths or non-isomorphic trees). We show that graph homomorphism numbers provide a natural invariant (isomorphism invariant and $mathcal{F}$-invariant) embedding maps which can be used for graph classification. Viewing the expressive power of a graph classifier by the $mathcal{F}$-indistinguishable concept, we prove the universality property of graph homomorphism vectors in approximating $mathcal{F}$-invariant functions. In practice, by choosing $mathcal{F}$ whose elements have bounded tree-width, we show that the homomorphism method is efficient compared with other methods.
Graph embeddings are a ubiquitous tool for machine learning tasks, such as node classification and link prediction, on graph-structured data. However, computing the embeddings for large-scale graphs is prohibitively inefficient even if we are interes ted only in a small subset of relevant vertices. To address this, we present an efficient graph coarsening approach, based on Schur complements, for computing the embedding of the relevant vertices. We prove that these embeddings are preserved exactly by the Schur complement graph that is obtained via Gaussian elimination on the non-relevant vertices. As computing Schur complements is expensive, we give a nearly-linear time algorithm that generates a coarsened graph on the relevant vertices that provably matches the Schur complement in expectation in each iteration. Our experiments involving prediction tasks on graphs demonstrate that computing embeddings on the coarsened graph, rather than the entire graph, leads to significant time savings without sacrificing accuracy.
This paper studies the problem of error-runtime trade-off, typically encountered in decentralized training based on stochastic gradient descent (SGD) using a given network. While a denser (sparser) network topology results in faster (slower) error co nvergence in terms of iterations, it incurs more (less) communication time/delay per iteration. In this paper, we propose MATCHA, an algorithm that can achieve a win-win in this error-runtime trade-off for any arbitrary network topology. The main idea of MATCHA is to parallelize inter-node communication by decomposing the topology into matchings. To preserve fast error convergence speed, it identifies and communicates more frequently over critical links, and saves communication time by using other links less frequently. Experiments on a suite of datasets and deep neural networks validate the theoretical analyses and demonstrate that MATCHA takes up to $5times$ less time than vanilla decentralized SGD to reach the same training loss.
Dense subgraph discovery aims to find a dense component in edge-weighted graphs. This is a fundamental graph-mining task with a variety of applications and thus has received much attention recently. Although most existing methods assume that each ind ividual edge weight is easily obtained, such an assumption is not necessarily valid in practice. In this paper, we introduce a novel learning problem for dense subgraph discovery in which a learner queries edge subsets rather than only single edges and observes a noisy sum of edge weights in a queried subset. For this problem, we first propose a polynomial-time algorithm that obtains a nearly-optimal solution with high probability. Moreover, to deal with large-sized graphs, we design a more scalable algorithm with a theoretical guarantee. Computational experiments using real-world graphs demonstrate the effectiveness of our algorithms.
Thompson Sampling is one of the oldest heuristics for multi-armed bandit problems. It is a randomized algorithm based on Bayesian ideas, and has recently generated significant interest after several studies demonstrated it to have better empirical pe rformance compared to the state of the art methods. In this paper, we provide a novel regret analysis for Thompson Sampling that simultaneously proves both the optimal problem-dependent bound of $(1+epsilon)sum_i frac{ln T}{Delta_i}+O(frac{N}{epsilon^2})$ and the first near-optimal problem-independent bound of $O(sqrt{NTln T})$ on the expected regret of this algorithm. Our near-optimal problem-independent bound solves a COLT 2012 open problem of Chapelle and Li. The optimal problem-dependent regret bound for this problem was first proven recently by Kaufmann et al. [ALT 2012]. Our novel martingale-based analysis techniques are conceptually simple, easily extend to distributions other than the Beta distribution, and also extend to the more general contextual bandits setting [Manuscript, Agrawal and Goyal, 2012].

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا