ﻻ يوجد ملخص باللغة العربية
Feature generation is an open topic of investigation in graph machine learning. In this paper, we study the use of graph homomorphism density features as a scalable alternative to homomorphism numbers which retain similar theoretical properties and ability to take into account inductive bias. For this, we propose a high-performance implementation of a simple sampling algorithm which computes additive approximations of homomorphism densities. In the context of graph machine learning, we demonstrate in experiments that simple linear models trained on sample homomorphism densities can achieve performance comparable to graph neural networks on standard graph classification datasets. Finally, we show in experiments on synthetic data that this algorithm scales to very large graphs when implemented with Bloom filters.
In this paper, we study the graph classification problem from the graph homomorphism perspective. We consider the homomorphisms from $F$ to $G$, where $G$ is a graph of interest (e.g. molecules or social networks) and $F$ belongs to some family of gr
Graph embeddings are a ubiquitous tool for machine learning tasks, such as node classification and link prediction, on graph-structured data. However, computing the embeddings for large-scale graphs is prohibitively inefficient even if we are interes
This paper studies the problem of error-runtime trade-off, typically encountered in decentralized training based on stochastic gradient descent (SGD) using a given network. While a denser (sparser) network topology results in faster (slower) error co
Dense subgraph discovery aims to find a dense component in edge-weighted graphs. This is a fundamental graph-mining task with a variety of applications and thus has received much attention recently. Although most existing methods assume that each ind
Thompson Sampling is one of the oldest heuristics for multi-armed bandit problems. It is a randomized algorithm based on Bayesian ideas, and has recently generated significant interest after several studies demonstrated it to have better empirical pe