ﻻ يوجد ملخص باللغة العربية
The main objective of this work, is to show two inequivalent methods to obtain new spherical symmetric solutions of Einsteins Equations with anisotropy in the pressures in isotropic coordinates. This was done inspired by the MGD method, which is known to be valid for line elements in Schwarzschild coordinates. As example, we obtained four analytical solutions using Gold III as seed solution. Two solutions, out of four, (one for each algorithm), satisfy the physical acceptability conditions.
In this work we give a complete picture of how to in a direct simple way define the mass at null infinity in harmonic coordinates in three different ways that we show satisfy the Bondi mass loss law. The first and second way involve only the limit of
We study the particular case in which Extended Geometric Deformation does consists of consecutive deformations of temporal and spatial components of the metric, in Schwarzschild-like and isotropic coordinates. In the latter, we present two inequivale
The aim of this work is to obtain new analitical solutions for Einstein equations in the anisotropical domain. This will be done via the minimal geometric deformation (MGD) approach, which is a simple and systematical method that allow us to decouple
Under a weak assumption of the existence of a geodesic null congruence, we present the general solution of the Einstein field equations in three dimensions with any value of the cosmological constant, admitting an aligned null matter field, and also
We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, accounting for all the spin-weighted quadrupolar modes, and separately accounting for all the quadrupolar and octopolar modes. Consistent with th